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ІМОВІРНІСНЕ ПРОГНОЗУВАННЯ ПРОМИСЛОВОГО 

НАВАНТАЖЕННЯ: LIGHTGBM ТА TFT 

З УРАХУВАННЯМ РИНКОВИХ ОБМЕЖЕНЬ 
 

В роботі представлено орієнтований на графік роботи обладнання підхід до середньострокового 

прогнозування промислового навантаження, який передбачає декомпозицію споживання на 

детермінований базовий профіль, сформований із графіків роботи обладнання, та стохастичного 

залишку, що моделюється за допомогою LightGBM і Temporal Fusion Transformer (TFT). Режимні зсуви 

визначаються за допомогою сегментації PELT, тоді як багатогоризонтні квантильні прогнози 

забезпечуються неперетинними та узгодженими між часовими рівнями завдяки методам MinT/THieF. 

Ринкові обмеження інтегруються через вибір релевантних горизонтів прогнозування, що відповідають 

правилам закриття «воріт» для двосторонніх договорів і ринку «на добу наперед», а також через 

застосування вартісно-зваженої pinball-втрати, яка відображає асиметричні витрати небалансів у 

критичні години. На відкладеній тестовій вибірці TFT перевершує LGBM за точністю точкових прогнозів. 

Використання конформної квантильної регресії (CQR) для LGBM і γ-звуження для TFT покращує емпіричне 

покриття до номінального рівня та зменшує ширину інтервалів. Запропонований підхід є безпосередньо 

придатним для планування закупівель відповідно до правил українського ринку електроенергії та 

узгоджується з «decision-centric» оцінюванням економічної вартості прогнозів. 

Ключові слова: прогнозування електричного навантаження, промислове підприємство, 

квантильні прогнози, темпоральне узгодження, ринкові фактори електроенергетики. 

 

Вступ 

Прогнозування навантаження та попиту на електричну енергію промислового підприємства є 

важливим інструментом для експлуатації та планування його діяльності. Особливо враховуючи, що 

підприємство, як непобутовий споживач, згідно Закону України «Про ринок електричної енергії» є 

повноцінним учасником ринку електричної енергії. Такий споживач має право купувати електричну 

енергію для власного споживання за двосторонніми договорами та на організованих сегментах ринку [1]. 

Це відкриває для промислового підприємства, як нові можливості, так і відповідальність за власні 

небаланси електричної енергії, що фактично стимулює таких споживачів покращувати точність власного 

прогнозування і забезпечувати мінімальну можливу його помилку, з метою зменшення витрат на власне 

споживання з врахуванням ринкових умов. Промисловий споживач має потенціал для активної участі у 

впровадженні сучасних ринкових механізмів, таких як гнучке споживання, розподілена генерація, а також 

оптимізація процесів імпорту та експорту електроенергії. 

Електричне навантаження промислового підприємства формується під впливом множини 

взаємопов’язаних чинників: клімату та погоди, календарно-сезонних шаблонів, макроекономічної 

активності/обсягів виробництва, а також цінових сигналів на сегментах ринку електричної енергії. 

Систематичні огляди прогнозування навантаження послідовно підкреслюють роль цих факторів 

прогнозування та їхню значущість на різних горизонтах прогнозу, зокрема для промислових споживачів [2, 

3]. 

Перспективи розвитку нових приладів обліку, що можуть передавати дані в режимі реального часу, 

створюють як нові можливості (детальніша ідентифікація режимів), так і нові виклики для моделей 

(виражена нелінійність, характеризується стохастичністю) [4, 5]. 

На практиці прогнозування традиційно розрізняють завдання за горизонтом: від дуже 

короткого/короткого (хвилини-дні) через середньострокове (тижні-місяці) до довгострокового (роки) [6]. 

Водночас для задачі формування оптимальної структури закупівлі електроенергії за двосторонніми 

договорами ключовим є інтервал, у межах якого промислові споживачі приймають рішення щодо фіксації 

базового навантаження: практично доцільним є діапазон від 3 місяців до 2 тижнів до початку постачання. 

Саме цей проміжок забезпечує достатню стабільність виробничих планів і водночас дозволяє 

використовувати актуалізовані зовнішні чинники (календарно-сезонні шаблони, погодне нормування, 

очікування щодо ринкових цін), знижуючи ризик не узгодити план випуску продукції та контрактованими 

обсягами. 

Для промислового споживача довгострокова задача задоволення попиту може бути поділена на: 

задоволення потреби базового навантаження та реалізація залишкових відхилень. Укладання двосторонніх 
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договорів дає можливість завчасно зафіксувати гарантовані обсяги споживання електричної енергії, що 

забезпечує покриття базового навантаження підприємства та знижує залежність від цінових коливань на 

короткострокових сегментах ринку. У свою чергу залишкові відхилення оптимально коригувати на «ринку 

на добу наперед», внутрішньодобовому та балансуючому сегментах ринку електричної енергії. У даному 

дослідженні увага зосереджена на методах прогнозування електричного навантаження, які є доцільними 

для задоволення попиту підприємства на ринку двосторонніх договорів, а також на розробленні методики 

подальшого уточнення структури закупівлі електроенергії через ринок «на добу наперед» та 

внутрішньодобовий ринок без порушення виробничого графіка. 

У роботі аналізуються моделі середньострокового (від кількох тижнів до кількох місяців) і 

довгострокового (від кількох місяців до років) прогнозування електроспоживання на рівні промислового 

підприємства із залученням історичних даних, метеорологічних чинників та виробничих графіків роботи 

обладнання. 

Метою дослідження є розробка та оцінка орієнтований на графік роботи обладнання підходу 

середньострокового прогнозування навантаження промислового підприємства, що поєднує детерміновану 

базу від графіка роботи обладнання, режимну сегментацію, ймовірнісне моделювання залишку і 

темпоральне узгодження з ринково-орієнтованою функцією втрат, релевантною до «закриття воріт» та 

вартості небалансів. 

Визначення горизонту прогнозування 

Аналіз поточної структури ринку електричної енергії України дає змогу виокремити його основні 

сегменти та ідентифікувати специфічні обмеження щодо участі суб’єкта на кожному з них. Ключовим 

елементом функціонування є часові рамки торгівлі, які визначають доступність укладання угод. Ці часові 

обмеження відображено на відповідній часовій шкалі (рис. 1), що ілюструє моменти відкриття та закриття 

«воріт» на різних сегментах ринку. Такий підхід дозволяє систематизувати особливості роботи 

двосторонніх договорів, ринку «на добу наперед» та внутрішньодобового ринку, а також врахувати 

регуляторні вимоги та технічні умови, що накладаються на учасників ринку в кожному часовому проміжку. 

 

 
Рисунок 1 – Сегменти ринку електричної енергії України (відкриття та закриття «воріт» на 

відповідних сегментах ринку електричної енергії) [1, 7, 8, 9] 

 

Ключову роль у забезпеченні стабільності постачання для промислових споживачів відіграє сегмент 

двосторонніх договорів. Саме через нього формується базове навантаження, що дозволяє мінімізувати 

ризики волатильності короткострокових сегментів та забезпечувати прогнозованість виробничих процесів. 

Важливо підкреслити, що укладання двосторонніх договорів здійснюється заздалегідь, нерідко на 

горизонтах від кількох тижнів до одного року і більше, а також супроводжується регламентованими 

часовими обмеженнями – зокрема закриттям «воріт» о 10:00 за один день до доби постачання [7]. Це 

зумовлює необхідність наявності достовірного прогнозу споживання з достатнім випередженням. 

Для ефективної участі у сегменті двосторонніх договорів потрібне поєднання декількох підходів: 

довгострокового та середньострокового прогнозування – з метою формування загального профілю 

навантаження та визначення обсягів, які будуть зафіксовані в договорах заздалегідь, а також 

короткострокового прогнозування, що дозволяє уточнювати споживання напередодні постачання та 

узгоджувати його з виробничим графіком. Таким чином, завдання прогнозування у контексті двосторонніх 

договорів набуває комплексного характеру, поєднуючи стратегічне та оперативне планування. 

Аналіз актуальних досліджень 

Прогнозування на основі комплексних та численних показників раннього попередження 

Автори [10] пропонують середньо- та довгостроковий метод прогнозування навантаження, що 

об’єднує кілька «ранніх індикаторів», переводячи їх у спільну дискретну шкалу й інтегруючи за принципом 

мінімальних інформаційних втрат (МІВ). Результатом є ймовірнісне передбачення інтервалів зміни 

сезонної компоненти попиту, з подальшим переходом до точкового прогнозу (середина інтервалу). 
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На першому етапі працюють з попередньою сезонною корекцією (X-12-ARIMA), далі із циклічним 

приростом зміни несезонної компоненти. Наступним кроком виконується вибір індикаторів із 

фізичним/економічним сенсом, дискретизація індикаторів і цільової змінної та оцінка їхніх розподілів. 

Індикатори об’єднуються за принципом МІВ. І в кінці повернення від зміни сезонної компоненти до 

реального попиту. 

Перевагами такого підходу можна зазначити єдину шкалу для різнорідних індикаторів, стійкість до 

шуму (через дискретизацію) та краща поведінка в «точках зламу» (коли структура попиту змінюється). Але 

наявні недоліки, а саме використання місячних рядів, що у контексті ринку електричної енергії не є 

доцільним, адже ціни змінюються погодинно. Також потрібен осмислений вибір індикаторів. 

Дискретизація спрощує (може втрачатися нюанс неперервних зв’язків). 

Детерміновано-агреговані моделі на основі графіка роботи обладнання 

Характеризуються побудовою планового профілю навантаження як суми одиничних графіків роботи 

технологічних агрегатів і/або цехів з урахуванням їхніх режимів, пускових струмів та процесів розігріву, 

обмежень на зміну станів (гістерезису) та календаря виробництва. Такий підхід природно спирається на 

відомі наперед регламенти функціонування й добре масштабується на складні виробничі системи [11, 12]. 

Практично це формує «базову траєкторію», яка надалі коригується статистичною чи ML-моделлю 

для врахування залишкових ефектів (похибки плану, впливу погоди на непроцесних споживачів, 

мікроподій). Такий двошаровий підхід є ключовим для досягнення високої точності на середніх горизонтах 

прогнозу, коли розклад операцій уже набуває достатньої стабільності. 

Регресійні моделі із зовнішніми регресорами 

Регресія з ARIMA-похибкою (ARIMAX). Такий підхід дає змогу включати відомі наперед 

коваріати (наприклад, календарні фактори, інформацію про зміни або планові операції) та одночасно 

моделювати автокореляційну структуру ряду через ARIMA-компоненту похибки. Метод доцільний для 

середньострокових горизонтів прогнозування за наявності стабільних зовнішніх предикторів [13]. 

Динамічна гармонічна регресія (DHR). Сезонні коливання у цьому підході описуються за 

допомогою системи гармонічних (Фур’є) термів, тоді як короткострокова залежність моделюється ARMA-

похибкою. Така специфікація ефективна у випадках, коли в часових рядах поєднується кілька циклів 

(наприклад, добові, тижневі або змінні) [13]. 

TBATS. Це універсальна модельна рамка, яка поєднує трансформацію Бокса-Кокса, ARMA-

похибку, компоненту тренду та тригонометричне подання сезонності, що дозволяє адекватно відтворювати 

складні сезонні структури й багаточастотні дані [15]. 

Ключовими перевагами наведених підходів є прозорість, інтерпретованість та відносна простота 

інтеграції відомих у майбутньому змінних, таких як службові індикатори робочих змін, простоїв або інших 

виробничих регламентів. 

Гладкі адитивні моделі (GAM/SCAM) із фізично орієнтованими обмеженнями 

Гладкі адитивні моделі добре описують нелінійні залежності попиту від температури, календарних 

факторів та їхніх взаємодій із режимом роботи. Для відображення циклічних закономірностей 

застосовуються циклічні сплайни, наприклад, для змін «година-тиждень» чи «місяць-рік». У випадках, 

коли потрібні фізично обґрунтовані обмеження, доцільно використовувати SCAM. Такий підхід дозволяє 

накладати апріорні умови, зокрема монотонне зростання реакції навантаження або U-подібну залежність 

від температури [15, 16]. 

Основними сильними сторонами цих підходів є інтерпретованість отриманих ефектів, можливість 

фізично коректного екстраполювання на помірних горизонтах прогнозування за умови стабільної 

структури предикторів та гнучкість у моделюванні нелінійних та циклічних зв’язків. 

Ансамблі дерев рішень для точкових і квантильних прогнозів 

(GBM/XGBoost/LightGBM/CatBoost; QRF) 

Градієнтне підсилення дерев (GBM). Цей підхід є стандартом для роботи з табличними даними, 

що містять велику кількість ознак (лагові змінні, ковзні статистики, календарні та режимні індикатори). 

Реалізації, зокрема XGBoost, LightGBM і CatBoost, демонструють високу точність, забезпечують 

механізми регуляризації та, у випадку LightGBM, підтримують накладання монотонних обмежень. Це 

особливо важливо при моделюванні температурних ефектів, де очікується фізично обґрунтована 

монотонність реакції навантаження [17, 18, 19]. 

Для побудови інтервальних прогнозів застосовуються: квантильне навчання бустингових моделей із 

використанням функції втрат pinball-loss, що дозволяє безпосередньо оцінювати τ-квантилі розподілу 

умовного попиту; Quantile Regression Forests (QRF) як непараметрична альтернатива, яка формує 

емпіричний розподіл на основі ансамблю дерев і дозволяє отримувати будь-які квантилі постфактум [20]. 

У практичних застосуваннях необхідно забезпечувати узгодженість квантильних прогнозів, а також 

перевіряти покриття прогнозних інтервалів на валідаційних вибірках для досягнення цільового рівня 

довіри. 
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Нейромережеві архітектури для багатогоризонтного прогнозування. 

LSTM/GRU та Temporal Convolutional Networks (TCN). Рекурентні мережі типу LSTM та GRU, а 

також каузальні згорткові мережі TCN, здатні відображати довгострокові залежності у багатовимірних 

часових рядах і добре інтегруються з відомими наперед коваріатами [21]. 

N-BEATS та N-HiTS. Архітектури на основі багатошарових персептронів, які показали високу 

точність на міжнародних змаганнях із прогнозування та продемонстрували здатність до узагальнення. 

Вони однаково ефективні як для одиничних, так і для групових часових рядів [22, 23]. 

Temporal Fusion Transformer (TFT). Спеціалізована трансформерна архітектура для багато-

горизонтного прогнозування, яка здійснює розподіл ознак на статичні, відомі у майбутньому та 

спостережувані. Завдяки інтерпретованим механізмам уваги TFT особливо доречний для випадків, коли 

графік роботи відомий наперед і може бути поданий як known-future inputs [24]. 

PatchTST та інші трансформери для довгих послідовностей. Сучасні архітектури, що базуються 

на патч-поданні, демонструють високу ефективність у роботі з довгими часовими рядами (годинні або 

півгодинні дані) та уникають «вибуху» обчислювальних витрат пам’яті, властивого класичним 

трансформерам [25]. 

Режимно-орієнтований шар: виявлення та моделювання точок зламу 

На середньострокових горизонтах прогнозування часто спостерігаються зміни виробничих режимів, 

пов’язані з перезапуском технологічних ліній, проведенням ремонтів або сезонними переходами. Для 

підвищення стабільності моделей доцільно застосовувати такі підходи. 

Один з таких є алгоритм PELT, що має лінійну складність і дозволяє сегментувати часовий ряд та 

закодувати режими за допомогою one-hot представлення [26, 27]. Також за допомогою методу BOCPD 

(Bayesian Online Change Point Detection), який забезпечує оперативне оновлення прогнозів у режимі 

реального часу [28]. 

Альтернативним підходом є використання регресійних моделей зі «switch»-режимами або 

прихованих марковських моделей (Hidden Markov Models, HMM), які дозволяють моделювати зміни станів 

на основі календарних та режимних індикаторів. 

Ієрархічне та темпоральне узгодження прогнозів 

Для забезпечення когерентності прогнозів як між часовими рівнями (година-доба-тиждень-місяць), 

так і між виробничими підсистемами (лінія-цех-завод), доцільно застосовувати методи forecast 

reconciliation. Найбільш поширеними підходами є MinT (minimum-trace reconciliation) та темпоральні 

ієрархії (THieF). Їхнє використання підвищує точність оцінок на всіх рівнях агрегації та забезпечує 

узгодженість планування [29, 30, 32]. 

Постановка задачі 

Нехай задано часовий ряд активної потужності (або, еквівалентно, ряду споживання електроенергії, 

перерахованого у потужність) з годинною дискретністю 𝑦𝑡  для 𝑡 = 1, … , 𝑇. Відомі в майбутньому коваріати 

𝔁𝑡, а саме детермінований графік роботи обладнання 𝑠𝑡, календарні коваріати 𝑐𝑡, погода (температура, 

CDD/HDD тощо) 𝑤𝑡 , лагові та ковзані значення 𝑙𝑡: 
 

𝔁𝑡 = (𝑠𝑡 , 𝑐𝑡 , 𝑤𝑡 , 𝑙𝑡) (1) 
 

Пропонується декомпозиція навантаження у вигляді: 
 

𝑦𝑡 = 𝑏𝑡 + 𝑟𝑡 ,      𝑏𝑡 ≔ ∑ 𝑠𝑘,𝑡𝑃𝑘

𝐾

𝑘=1

 (2) 

 

де 𝑏𝑡 – детермінований базовий профіль, отриманий із графіка роботи обладнання (індикатори 𝑠𝑘,𝑦 ∈

{0,1} та його номінальна потужність 𝑃𝑘), а 𝑟𝑡 – стохастичний залишок, який відображає відхилення від 

планового профілю. Така декомпозиція є природною для промислових споживачів, де значна частка 

споживання визначається виробничими режимами [32]. 

Задача дослідження – оцінити багатогоризонтні квантильні прогнози 𝑦̂𝑇+ℎ
(𝑞)

, для ℎ = 1: 𝐻, 𝑞 ∈

{0.1,0.5,0.9}, із забезпеченням когерентності між годинними, добовими та тижневими рівнями агрегації. 

Режимно-орієнтовне виявлення зламів у залишках 

На першому кроці оцінюємо залишок 𝑟𝑡 = 𝑦𝑡 − 𝑏𝑡  та виконуємо сегментацію на однорідні режими 

методом PELT (Pruned Exact Linear Time) з квадратичною вартістю [26]: 
 

min
𝜏1:𝑀

∑ 𝐶(𝑟𝜏𝑚
+ 1: 𝜏𝑚+1) + 𝛽𝑀

𝑀

𝑚=0

,   𝐶(⋅) = ∑(𝑟𝑡 − 𝑟̅)2 , (3) 

 

Де 𝜏𝑚 – межі сегментів, 𝛽 – штраф. Реалізаційно використовуємо алгоритми бібліотеки ruptures [27]. 
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Стохастична модель залишку 

Для кожного 𝑞 ∈ {0.1,0.5,0.9} навчаємо апроксиматор 𝑓𝑞: 𝔁𝑡 → 𝑦̂𝑡
(𝑞)

. Навчальна ціль – вартісно-

зважена “pinball”-втрата [33]: 
 

ℒ𝑞 = ∑ 𝜔𝑡𝑝𝑞 (𝑟𝑡 − 𝑓𝑞(𝔁𝑡))

𝑇

𝑡=1

 ,     𝑝𝑞(𝑢) = 𝑢(𝑞 − 1{𝑢 < 0}) 

 

(4) 

де ваги 𝜔𝑡 відображають економіку небалансів (наприклад, підсилення робочих годин та «закриття 

воріт»), як вартісний пріоритет у функції втрат, коли помилка прогнозу найбільш дорога з точки зору 

контрактів/небалансів: 
 

𝜔𝑡 = 1 + 𝛼11{𝑡 ∈ 𝑝𝑒𝑎𝑘} + 𝛼21{𝑡 = ℎ∗} (5) 
 

Як базову реалізацію беремо LightGBM з GPU-прискоренням [18]. Фізичні shape-обмеження 

(монотонний вплив CDD/HDD) задаємо через монотонні обмеження ознак у медіанній моделі 𝑓0.5 з L2-

втратою: 
 

min
𝑓

∑ 𝜔𝑡(𝑟𝑡 − 𝑓(𝔁𝑡))
2

𝑡

     
𝜕𝑓

𝜕𝐶𝐷𝐷
≥ 0,

𝜕𝑓

𝜕𝐻𝐷𝐷
≥ 0 (6) 

 

Таке рішення узгоджується з ідеологією SCAM (Shape-Constrained Additive Models) [15], а також із 

підтримкою монотонних обмежень у дерев’яних ансамблях (зокрема, у LightGBM для регресійних задач). 

Водночас у LightGBM монотонні обмеження несумісні з квантильною ціллю. Тому на практиці 

застосовується гібридний підхід: медіану 𝑟̂(0.5) оцінюють за допомогою L2-моделі з монотонними 

обмеженнями, тоді як крайні квантилі 𝑞 = (0.1, 0.9), прогнозують квантильними моделями без обмежень, 

додаючи прогноз медіани 𝑟̂(0.5) як додаткову ознаку. Такий підхід забезпечує емпіричну стабілізацію 

крайових квантилів і зменшує ризик їхнього перетину. 

Альтернативою або компонентом ансамблю виступає Temporal Fusion Transformer (TFT) - 

спеціалізована трансформерна архітектура для інтервальних багатогоризонтних прогнозів, яка 

використовує відомі наперед коваріати та поєднує механізми уваги керування потоками [24]. Для кожного 

рівня квантилі 𝑞 навчається модель 𝑔𝑞, що мінімізує відповідну квантильну функцію втрат ℒ𝑞 на залишках: 
 

𝑟̂𝑡
(𝑞)

= 𝑔𝑞({𝔁𝑡−𝐿:𝑡}, {𝔁𝑡+1:𝑡+𝐻
відомі }) (7) 

 

TFT є придатним для моделювання складних нелінійних взаємодій типу «режим × погода × 

календар» і природно узгоджується з постановкою «known-in-advance» у задачах промислового 

планування, коли графік роботи обладнання є детермінованим і відомий заздалегідь [24]. 

Рекурсивне багатогоризонтне прогнозування та узгодженість квантилів. 

Нехай 𝑡 = 𝑇 + 𝑘, 𝑘 = 1: 𝐻. На кроці 𝑘 будуємо 𝔁𝑇+𝑘, який включає відомі календарні та планові 

фактори, а також оновлені лагові й ковзні статистики, побудовані на основі вже прогнозованої медіани. 

Далі прогноз для квантилі. Далі прогноз для квантилю 𝑞 визначається як: 
 

𝑦̂𝑇+𝑘
(𝑞)

= 𝑏𝑇+𝑘 + 𝑟̂𝑇+𝑘
(𝑞)

,    𝑟̂𝑇+𝑘
(𝑞)

∈ {𝑓𝑞(𝔁𝑇+𝑘), 𝑔𝑞(⋅)}  (8) 
 

Для забезпечення неперетину квантильних прогнозів застосовується впорядкування {𝑦̂(0.1) ≤

𝑦̂(0.5) ≤ 𝑦̂(0.9)}, що відповідає підходам квантильної реконструкції [34]. 

Узгодження між часовими рівнями 

Позначимо 𝑦баз ∈ ℝ𝑛 вектор базових прогнозів усіх рівнів часової ієрархії (година/доба/тиждень). 

Тоді узгоджений прогноз у методі MinT визначається як  
 

𝒚̃ = 𝑆(𝑆⊤𝑊−1𝑆)−1𝑆⊤𝑊−1𝑦баз (9) 
 

де 𝑆 – матриця агрегації, яка відображає зв’язок між базовими та агрегованими рівнями; 𝑊 – 

(структурно) узагальнена коваріація похибок (wls_struct). Такий підхід гарантує когерентність прогнозів 

між рівнями ієрархії та зменшує середньоквадратичну похибку узгоджених оцінок [29]. Побудову 

темпоральних ієрархій і практичні аспекти застосування описано в [31]. 

Остаточні квантильні прогнози набувають вигляду: 
 

𝑦̂𝑇+1:𝑇+𝐻
(𝑞)

= ℛ (𝑏𝑇+1:𝑇+𝐻 + 𝑟̂𝑇+1:𝑇+𝐻
(𝑞)

) , 𝑞 ∈ {0.1, 0.5, 0.9} (10) 
 

де ℛ(⋅) - оператор узгодження 𝒚̃ на рівні 𝑞 = 0.5 за схемою MinT, а також процедура впорядкування 

(non-crossing) для множини квантилів (0.1, 0.5, 0.9). 
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Обґрунтування вибору моделей. Запропонована архітектура спирається на поєднання сучасних 

методів прогнозування, кожен з яких має власні сильні сторони. По-перше, використання орієнтованого на 

графік роботи обладнання підходу декомпозиції дозволяє відокремити детерміновану компоненту 

(виробничий план, номінали обладнання) від стохастичної частини, що знижує дисперсію залишків і 

підвищує здатність моделі узагальнювати між різними режимами [32]. По-друге, сегментація за допомогою 

алгоритму PELT забезпечує асимптотично лінійну обчислювальну складність та стійкість до довгих 

часових рядів, а бібліотека ruptures пропонує перевірену реалізацію цього підходу [26, 27]. По-третє, 

ансамблеві моделі градієнтного бустингу, зокрема LightGBM, дозволяють інтегрувати фізично 

обґрунтовані залежності, наприклад вплив температури [18]. Додатково застосовується Temporal Fusion 

Transformer (TFT), спеціалізований для багато-горизонтних задач із відомими наперед коваріатами, здатний 

відображати довготривалі залежності та взаємодії між режимними факторами завдяки механізмам уваги, 

що забезпечує конкурентну точність та інтерпретованість результатів [24]. Використання вартісно-

зваженої функції втрат «pinball» дозволяє узгодити процес навчання із метриками, які враховують 

небаланси та договірні зобов’язання [33]. Крім того, застосування методів узгодження прогнозів, зокрема 

MinT та темпоральних ієрархій (THieF), гарантує когерентність між годинними, добовими та тижневими 

рішеннями й зменшує помилки на агрегованих рівнях [29, 31]. Нарешті, використання процедури non-

crossing забезпечує достовірність інтервальних прогнозів [34]. 

Метрики та валідація 

Оцінювання здійснювалося на відкладеному тестовому інтервалі з протоколом «розширюваного 

вікна» та окремою калібрувальною вибіркою. Точкову якість вимірювали за MAE, RMSE, sMAPE; 

інтервальну за Pinball-втратою для 𝜏 ∈ {0.1,0.5,0.9}, покриттям 𝐼𝐶𝑃80, шириною 𝐴𝐼𝑊80 і критерієм 

𝑊𝑖𝑛𝑘𝑙𝑒𝑟80. Відомі у майбутньому ознаки (графік/календар/номінали) включалися без витоку; лагові та 

ковзні статистики обчислювалися лише з минулих значень. 

Точкові метрики: 
 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑡 − 𝑦̂𝑡|

𝑡∈𝒯

, 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑡∈𝒯

,       𝑠𝑀𝐴𝑃𝐸 =
2

𝑁
∑

|𝑦𝑡 − 𝑦̂𝑡|

|𝑦𝑡| + |𝑦̂𝑡| + 𝜀
𝑡∈𝒯

 (11) 

 

Pinball-втрата для 𝜏 ∈ (0,1): 
 

𝑃𝑖𝑛𝑏𝑎𝑙𝑙𝜏 =
1

𝑁
∑ 𝜌𝜏(𝑡𝑡 − 𝑦̂𝑡

(𝜏)
)

𝑡∈𝒯

,   𝜌𝜏(𝑢) = {
𝜏𝑢, 𝑢 ≥ 0

(𝜏 − 1)𝑢, 𝑢 < 0
 (12) 

 

Покриття інтервалу (ICP) для рівня 1 − 𝛼 = 0.8 та середня ширина інтервалу (AIW): 
 

𝐼𝐶𝑃80 =
1

𝑁
∑ 1{𝐿𝑡 ≤ 𝑦𝑡 ≤ 𝑈𝑡}

𝑡∈𝒯

 (13) 

𝐴𝐼𝑊80 =
1

𝑁
∑(𝑈𝑡 − 𝐿𝑡)

𝑡∈𝒯

 (14) 

 

Winkler-бал (інтервальний критерій) для рівня 1 − α: 
 

Winkler1−α =
1

𝑁
∑ [(𝑈𝑡 − 𝐿𝑡) +

2

𝛼
(𝐿𝑡 − 𝑦𝑡)1{𝑦𝑡 < 𝐿𝑡} +

2

𝛼
(𝑦𝑡 − 𝑈𝑡)1{𝑦𝑡 > 𝑈𝑡}]

𝑡∈𝒯

 (15) 

 

Результати експерименту 

Дослідження виконано на погодинному графіку навантаження існуючого промислового 

підприємства хімічної промисловості з відомими наперед коваріатами (виробничий розклад/номінали, 

календар, погода). Модельний підхід є орієнтованим на виробничий графік: споживання декомпонується 

на детерміновану базу 𝑏𝑡, розраховану з графіка роботи обладнання, та стохастичний залишок 𝑟𝑡, для якого 

навчаються точкові моделі та моделі квантильного прогнозування (LightGBM і TFT) з подальшим 

темпоральним узгодженням MinT. Опис підходу і мотивацію використання MinT/THieF у контексті 

планування промислового навантаження наведено вище. 

Точкові метрики на тесті (Табл. 1) свідчать про суттєву перевагу TFT над LGBM: MAE зменшено на 

52.1 %, RMSE на 40.9 %, sMAPE на 52.9 %. Отже, поєднання орієнованої на виробничий графік бази з 

багатогоризонтною нейромережею краще відтворює нелінійні взаємодії «графік роботи обладнання-

календар-погода» та довгі часові залежності, які важко повністю закодувати в ансамблях із фіксованими 

лагами/ковзними ознаками. 

За ймовірнісними метриками (Табл. 2) до калібрування спостерігаємо діаметрально протилежні 

зсуви. LGBM має різке недопокриття 80 %-інтервалів  (𝐼𝐶𝑃80 ≈ 0.045) та надто вузькі інтервали (𝐴𝐼𝑊80 ≈
240) , що підтверджують діаграми (Рис. 2): «тонкі» інтервали системно промахуються під час 
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піків/запусків. Натомість TFT дає помірне недопокриття  (𝐼𝐶𝑃80 ≈ 0.731) із відносно широкими 

інтервалами (𝐴𝐼𝑊80 ≈ 3964) , тобто поводиться обережніше, але ще не номінально калібровано. Після 

калібрування (CQR – для LGBM, γ-звуження – для TFT) покриття для обох моделей у наведеному прикладі 

стало наближено 𝐼𝐶𝑃80 ≈ 0.8. Отже, наявне достатнє покриття фактичного графіка та помірні інтервали. 

 

Таблиця 1 – Точкові метрики прогнозу навантаження 

 MAE RMSE sMAPE 

LGBM 1950.93 2241.72 0.04 

TFT 933.904 1323.92 0.019 

Δ% -52.13 -40.941 -52.922 

 

Таблиця 2 – Ймовірнісні метрики прогнозу навантаження до та після калібрування 

 
𝑃𝑖𝑛𝑏𝑎𝑙𝑙10 𝑃𝑖𝑛𝑏𝑎𝑙𝑙50 𝑃𝑖𝑛𝑏𝑎𝑙𝑙90 𝑊𝑖𝑛𝑘𝑙𝑒𝑟80 𝐼𝐶𝑃80 𝐴𝐼𝑊80 

до після до після до після до після до після до після 

LGBM 842.752 329.795 566.289 566.289 231.204 245.542 10739.6 5753.36 0.045 0.746 240.059 3234.37 

TFT 353.286 330.864 609.722 609.722 332.758 260.652 6860.44 5915.16 0.731 0.746 3963.57 3351.08 

 

Вхідний набір містить виміри споживання лише для найпотужніших споживачів і не охоплює 

дрібні/допоміжні навантаження (вентилятори, приводи, HVAC тощо), які сумарно створюють істотний 

фон. Через це «детермінована база» 𝑏𝑡 є заниженою, а її відсутній компонент фактично переноситься у 

залишок 𝑟𝑡. Неповна специфікація бази підвищує дисперсію 𝑟𝑡 і спотворює інтервальні оцінки: дерева, 

треновані на «вужчому» наборі предикторів, схильні до недопокриття (як у LGBM-до), тоді як TFT 

частково компенсує латентні ефекти за рахунок уваги/керування потоками, але потребує окремого 

калібрування ширини. Це узгоджується з графіками (Рис. 2) та числовими показниками (Табл. 2). 

Практичний висновок: щоб підвищити як точність, так і каліброваність інтервалів, варто донаситити 𝑏𝑡 

(включити більше обладнання/операційні режими) або додати проксі-ознаки для «неінструментованих» 

споживачів; альтернативно застосувати ієрархічну/латентну регуляризацію залишку. 
 

 
Рисунок 2 – Діаграми прогнозів навантаження до та після калібрування 

 

З огляду на Pinball-втрати, після калібрування спостерігаються очікувані зрушення на краях 

розподілу, а саме для LGBM Pinball-втрата для квантилю 0.1 знижується з 842.8 до 329.8, а Pinball-втрата 

для квантилю 0.9 з 231.2 до 245.5 (перерозподіл маси знизу/зверху, консистентний із розширенням 

інтервалів). У свою чергу для TFT Pinball-втрата для квантилю 0.9 зменшується з 332.8 до 260.7 при майже 

сталому Pinball-втрата для квантилю 0.5 (609.7), що типовo для γ-звуження, а саме звуження інтервалів із 

помірним впливом на медіану. Сукупно це підтверджує коректність обраної процедури калібрування та 

напрям подальшої оптимізації. 
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Висновки. 

У роботі запропоновано орієнтовану на графік роботи обладнання архітектуру середньострокового 

прогнозування навантаження промислового підприємства, яка поєднує детерміновану базу від графіка 

обладнання з режимною сегментацією PELT, стохастичним моделюванням залишку і темпоральним 

узгодженням MinT/THieF. Ринковий чинник інтегровано на рівні вибору горизонту та оперативного 

календаря прогнозу узгоджено з регламентом торгівлі та «закриттям воріт» та на рівні навчання ведеться 

за вартісно-зваженою функцією втрат, яка відображає асиметрію бізнес-ризиків небалансів у пікові та 

«критичні» години. До калібрування спостерігались крайові зсуви покриття, які усунено методами CQR та 

γ-звуження, що дало наближене до номіналу покриття 80 % і суттєве зменшення ширини інтервалів. 

Подальші дослідження буде зосереджено на «decision-centric» оцінюванні економічної вартості прогнозів: 

моделюванні процесів закупівлі (РДД, РДН/ВДР та врахування небалансів) під різними моделями та 

схемами калібрування, а також на аналізі чутливості до тарифів небалансів та різницею між ціною продажу 

та купівлі на різних сегментах. Додаткову увагу варто приділити розширенню набору відомих наперед 

коваріатів і забезпеченню крос-секційної когерентності. 
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PROBABILISTIC FORECASTING OF INDUSTRIAL LOAD: 

LIGHTGBM AND TFT WITH MARKET CONSTRAINTS 
 

In this work, we present an equipment‑schedule‑oriented approach to medium‑term industrial load 

forecasting that decomposes consumption into a deterministic baseline profile constructed from equipment 

operating schedules and a stochastic residual modeled using LightGBM (LGBM) and the Temporal Fusion 

Transformer (TFT). Regime shifts are detected via PELT (Pruned Exact Linear Time) change‑point segmentation, 

while multi‑horizon quantile forecasts are enforced to be non‑crossing and coherent across temporal aggregation 

levels through MinT/THieF reconciliation. Market constraints are integrated by selecting forecasting horizons 

aligned with the gate‑closure rules for bilateral contracts and the day‑ahead market, and by employing a 

cost‑weighted pinball loss that reflects asymmetric imbalance costs during critical hours. On a hold‑out test set, 

TFT outperforms LGBM in point‑forecast accuracy. Applying Conformal Quantile Regression (CQR) to LGBM 

and γ‑shrinkage (gamma‑shrinkage) to TFT improves empirical coverage to the nominal level and reduces 

interval widths. The proposed approach is directly applicable to procurement planning under the rules of the 

Ukrainian electricity market and is consistent with decision‑centric evaluation of the economic value of forecasts. 

Keywords: electric load forecasting, industrial enterprise, quantile forecasting, temporal reconciliation, 

electricity market factors. 
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