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MODERN METHODS FOR PREDICTING  

BUILDING ENERGY CONSUMPTION 
 

The relevance of the study is driven by the growing need to enhance the energy efficiency of buildings 

through thermomodernization and the demand for accurate forecasting tools to ensure effective energy 

management. In the context of climate change and rising energy prices, the selection of optimal forecasting models 

has become a critical task for housing and communal services as well as urban infrastructure. 

The aim of the study is to substantiate contemporary approaches to forecasting building energy 

consumption considering thermomodernization measures, based on the analysis of regression, neural, and hybrid 

models, in order to identify their advantages, limitations, and practical effectiveness. 

Methodology. A comparative analysis of recent studies was conducted, covering statistical, neural network, 

and hybrid forecasting models. The accuracy, scalability, flexibility, and adaptability of models to post-retrofit 

conditions were assessed. Particular attention was paid to deep learning architectures (LSTM, GRU), hybrid 

combinations (ARIMA+LSTM, CNN+ELM), and digital twin technologies. 

Results. It was established that the highest forecasting accuracy is achieved by neural network models, 

particularly deep architectures and ensembles, with average errors not exceeding 3–5%. Although regression 

methods are less accurate, they remain useful for baselineestimates and evaluating the impact of climatic 

variables. The effectiveness of hybrid approaches that combine trend modeling with neural network-based residual 

learning was demonstrated. The potential of digital twins as a tool for predictive and adaptive energy management 

was identified. 

Scientific novelty. For the first time, forecasting models were systematized in the context of building 

thermomodernization, with the identification of optimal approaches for different types of tasks. The relevance of 

applying intelligent forecasting systems integrated with digital twins as a new paradigm in building energy 

management was substantiated. 

Conclusions. It was proven that accurate forecasting of energy consumption is only possible when 

accounting for changes caused by thermomodernization and applying flexible models capable of adapting to new 

building operation conditions. It was determined that the integration of artificial intelligence methods with 

physical modeling and digital twinsenhances the accuracy and applicability of forecasts for practical energy 

management. 

Prospects for further research. It is advisable to develop combined modeling methods that consider 

behavioral factors in consumption, and to expand the empirical base for assessing the effectiveness of digital twins 

in retrofittedbuildings of various types. 

Keywords: building energy efficiency, predictive models, thermalretrofit, deep learning, digital twins, 

energy management systems. 

 

Introduction 

Despite the significant progress in energy-efficient technologies and the growing demand for building 

modernization, the issue of accurate forecasting of energy consumption remains a complex and insufficiently 

resolved task. Thermal modernization fundamentally changes the thermophysicalproperties and operating 

conditions of buildings, which leads to non-linear and dynamic changes in energy demand that traditional models 

are often unable to captureadequately. At the same time, climate change, the spread of renewable energy sources, 

and the implementation of smart energy systems intensify the need for adaptive and predictive energy management 

tools. In this context, the development of forecasting methods that take into account the effects of 

thermalretrofitting and reflect the real-time state of the building is not only a scientific challenge but also a practical 

necessity for ensuring energy sustainability. This task intersects with broader interdisciplinary problems, including 

the integration of artificial intelligence into engineering systems, the optimization of building performance based 

on sensor data, and the creation of digital twins as a basis for intelligent energy control. The lack of unified 

forecasting solutions capable of combining physical modeling, statistical inference, and machine learning under 

conditions of structural and operational change highlights the urgency of comprehensive research in this field. 

Addressing this problem is essential not only for reducing energy costs but also for achieving broader goals of 

carbon reduction, decarbonization of the building sector, and compliance with international sustainability 

standards. 
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Analysis of recent research and publications 

The analysis of scientific sources allows us to distinguish four major directions of research that define the 

current paradigm of predicting building energy consumption with consideration of thermal modernization: 

regression modeling, artificial neural networks, hybrid methods and digital twins, and practical model validation. 

The first direction involves the use of regression-based methods to quantitatively assess the impact of 

climatic, design, and behavioral factors on energy consumption. In the work of C. Yin, C. Han, A. Li, X. Liu, and 

Y. Liu, a comprehensive review of ANN-based models emphasized the limitations of linear regression in capturing 

complex interdependencies [1]. I. Bilous developed a regression model for forecasting thermal load in buildings 

by incorporatingairtemperature and structuralinertia, achieving 12–15% energy savings [2]. H. Liu, J. Liang, Y. 

Liu, and H. Wu also confirmed the limited applicability of classical regression techniques in highly dynamic post-

retrofit environments [3]. M. R. Braun, H. Altan, and S.B.M. Beck applied multiple regression to a UK 

supermarket case and predicted a 2.1% increase in electricity demand and 13% decrease in gas use under future 

climate conditions [4]. I. Korolija, Y. Zhang, L. Marjanovic-Halburd, and V. I. Hanbyderived regression-based 

equations for 3840 UK office models [5], while S. ShamsAmiri, M. Mottahedi, and S. Asadi used simulated DOE-

2 data to estimate energy indicators for U.S. commercial buildings [6].  

Z. Zhang, C. Deb, S.-E. Lee, J. Yang, and K. W. Shah applied SVR with differentialevolution optimization 

to achieve a meanabsolutepercentage error (MAPE) of only 3.8% [7].Further studies in this direction should focus 

on enhancing regression models by incorporatingretrofit-sensitive variables and nonlinear interactions. 

The second direction centers on the application of artificial neural networks (ANNs) to 

capturenonlineardependencies between multiple input variables and energy use. S. R. Mohandes, X. Zhang, and 

A. Mahdiyarreviewed over 90 studies, highlighting the shift from traditional MLPs to deep and recurrent neural 

networks [8]. K. Sun, Z. Dou, B. Zhang, and H. Zou proposed a CNN-ELM hybrid with FOA optimization that 

significantly improved both accuracy and speed [9]. B. Carrera, S. Peyrard, and K. Kim developed a stacking 

ensemble model for Songdo smart city combining CatBoost, ANN, and XGBoost, which achieved R² = 0.9789 

and MAE ≈ 2% [10]. In a subsequent study, B. Carrera and K. Kim implemented an encoder–decoder LSTM 

architecture for urban energy forecasting [11]. A. A. Pierre,S.A. Akim, A.K. Semenyo, and B. Babiga 

demonstrated that an ARIMA–LSTM hybrid yielded the lowest RMSE (7.35) when compared to standalone 

models [12]. D. So, J. Oh, I. Jeon, J. Moon, M. Lee, and S. Rho created the BiGTA-Net model integrating GRU, 

TCN, and attention, outperformingconventional methods with MAPE = 5.37% [13]. M. Anan, K. Kanaan, D. 

Benhaddou, and N. Nasser further improved prediction accuracy by including occupancy data in the LSTM 

architecture, reducing error to 2% [14].Future research should prioritize transfer learning, explainability of ANN 

models, and strategies to overcome data scarcity in retrofittedbuildings. 

The third direction involves hybrid and ensemble approaches that leverage the strengths of statistical and 

AI models. R. Evans and J. Gao pioneered deep learning applications for real-time cooling optimization in Google 

data centers, cutting energy use by 40% [15]. B. Arsecularatne, N. Rodrigo, and R. Changoutlined the growing 

role of digital twins in online forecasting and adaptive control [16]. S.S. MdRamli, M.N. Ibrahim, A. Mohamad, 

K. Daud, A.M.S. Omar, and N.D. Ahmad confirmed that ANN models generallyoutperform SVM and regression-

based methods in various building contexts [17]. C. Lu, T. Hong, and L. Yang identified several challenges in 

ANN deployment, such as hyperparametertuning, model interpretability, and insufficient training data [18].  

Y. Nam, Y. Hwangbo, and J. Yoo developed an LSTM–Prophet hybrid that improved short-term 

forecasting accuracy over standalone LSTM [19].Further work should investigate the integration of hybrid models 

into cloud-based control platforms and their robustness under changing operational conditions. 

The fourth direction focuses on real-world validation of forecasting methods in various building types. C. 

Fan, F. Xiao, C. Madsen, K. Wang, and S. J. Zuo compared ML models for offices, retail, and healthcare facilities, 

identifying MLP and Random Forest as optimal for different use cases [20]. T. Ahmad, H. Chen, M. A. Butt, B. A. 

Bawazir, and S. Sreeraj emphasized the advantages of hybrid approaches after analyzing over 50 studies published 

between 2010 and 2020 [21]. V. I. Deshko proposed the use of nonlinear multivariate regression to evaluate 

external and internal factors influencing building energy behavior, contributing to a broader modeling foundation 

[22].Future investigations should aim at expanding case studies across climaticzones and integrating forecasting 

modules into municipal energy management systems. 

Despite the growing academic and political attention to the Arctic, several critical aspects of the problem 

remain insufficiently explored. There is still a lack of comprehensive understanding of the geopolitical 

attractiveness of the region in the context of global strategic transformation. The resource and economic priorities 

of leading Arctic states are often examined in isolation, without comparative assessment of their competing 

models. China’sArctic strategy, despite its increasing relevance, remains under-analyzed, particularly regarding 

informal instruments of geo-economic presence. Legal uncertainty, the absence of universal regulatory 

mechanisms, and the potential impact of Arctic competition on the global balance of power also remain unresolved 

challenges in international discourse. 

This study aims to address these gaps by offering a systematic analysis of both Arctic and non-Arctic state 

strategies, comparing economic models of regional development, and identifying sources of institutional 
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instability. By applying an interdisciplinary approach that integrates geopolitical, economic, and legal dimensions, 

the research will deepen understanding of the mechanisms driving Arctic competition and contribute to a more 

coherent view of the region’s role in shaping the evolving architecture of international relations. 

Research aim - to substantiate contemporary approaches to forecasting building energy consumption 

considering thermomodernization measures, based on the analysis of regression, neural, and hybrid models, in 

order to identify their advantages, limitations, and practical effectiveness. 

Research objectives: 

1.To systematize the principal methods for predicting building energy consumption using regression 

analysis, artificial neural networks, and hybrid models. 

2.To analyze how thermomodernization factors are incorporated into these predictive models. 

3.To determine future directions for improving forecasting approaches in terms of accuracy, adaptability, 

and integration with energy efficiency management systems. 

3.1. Regression models 

Statistical regression models have long been employed in predicting building energy consumption due to 

their transparency, computational efficiency, and suitability for baselineassessments. Multiple linear regression 

(MLR) remains a foundational approach that enables the estimation of energy use based on independent variables 

such as outdoortemperature, building envelopeproperties, and operational schedules. For example, in the analysis 

of a UK supermarket, MLR was applied to identify climate sensitivity in consumption trends, revealing the 

relationship between risingtemperatures and changes in electricity and gas usage [4]. Similarly, for officebuildings, 

simulation-based regression models have been developed to predict annualheating and cooling demands as a 

function of design and usage parameters [5]. Another notable study in the U.S. context utilized regression 

techniques on DOE-2 simulation data to generate performance indicators across commercial building types, 

accounting for 17 architectural and operational factors [6]. 

Beyond MLR, autoregressive models such as ARIMA are frequently adopted for short-term energy 

forecasting due to their ability to model seasonal and trend components. Nevertheless, these models often face 

limitations when nonlinear dynamics are dominant or post-retrofit conditions significantly alter consumption 

patterns. To mitigate this, extensions like ARIMAX incorporate exogenous weather variables, while hybridization 

with machine learning techniques is increasingly pursued (as explored in Section 3.3). 

Support vector regression (SVR) and decisiontreeensemblesrepresent advanced statistical learning methods 

that expand upon classical regression. SVR, particularly when optimized using metaheuristic algorithms such as 

differentialevolution, has demonstrated improved accuracy in forecasting high-resolution load profiles [7]. 

Meanwhile, regression trees and random forests offer flexible alternatives capable of capturing complex 

interactions between features. These methods are often further enhanced in ensemble architectures, providing a 

bridge between interpretable models and machine learning performance.Overall, while regression-based models 

may underperform in highly dynamic or non-linear contexts, they remain valuable for their interpretability, 

adaptability to limited datasets, and role in initial scenario analysis, especially in early-stage assessments of 

thermomodernization impacts. 

3.2 Methods of artificial neural networks 

The use of ANNsfor modeling building energy consumption has been intensively studied since the 1990s 

and is currently recognized as one of the most effective approaches [1]. The advantage of neural networks is the 

ability to take into account nonlinearrelationships between many factors (weather conditions, usageschedule, 

building characteristics, etc.) and energy consumption. Classical multilayerperceptrons (MLPs) have been widely 

used as a "black box" for predicting the daily or hourly load of a building. However, the choice of the optimal 

architecture and the tuning of MLP scales was traditionallydonemanually, which could limit the accuracy. Modern 

research is focused on improving the training algorithms and structure of MLPs. For example, in 2019, Lu et al. 

analyzed 12 different neural network architectures, pointing out open problems in their application - the need for 

a large amount of training data, optimization of hyperparameters, and interpretation of results [18]. DimitriGuillot 

et al. (2021) reviewed the features and limitations of neural networks in the context of architectural design, which 

confirmed the interdisciplinary nature of this topic [1]. According to reviews [8], [17], there is a transition from 

traditional learning algorithms (gradientdescent, methods of direct error propagation) to the use of modern types 

of networks - radial basis networks, recurrent networks, etc. to improve convergence and accuracy. In particular, 

recurrent neural networks of longshort-term memory (LSTM) are currently showing the best results in predicting 

time series of consumption. In a study [14], an LSTM model trained on one-minute data from an office building, 

taking into account the presence of people, outperformed traditional ARIMA and SVR, achieving a significantly 

lower error (conditional error rate of 2.05 versus significantly higher values for other models) [14]. Thus, the 

LSTM is able to take into account the time dynamics of thermal processes and changes in operatingmodes after 

the implementation of energy-saving measures. Another area is convolutional neural networks (CNNs), which are 

typically used to process spatial data or detect local patterns in a series. In energy forecasting tasks, CNNs are used 

to automatically extract features from load time series, especially in combination with recurrent networks or 

simplified neurons. For example, in [9], a hybrid is proposed where the CNN acts as a feature extractor and the 
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output is passed to a simple neural classifier such as ELM. This approach improved the accuracy and speed of 

calculation compared to the standard CNN, since the Extreme Learning Machine (ELM) instantlydetermines the 

weights of the output layer without a longgradient training procedure [9]. In , attention mechanisms and other 

improvements to the network architecture are gaining more and more attention. Their integration allows the 

network to emphasize significant features of the input data. For example, in 2023, the BiGTA-Net model was 

proposed, which combines a bidirectional GRU, a temporal convolutional network, and an attention mechanism; 

this hybrid network achieved a MAPE of 5.37% and 36.9% higher accuracy than traditional deep networks when 

predicting the daily power load for the training corpus [13]. Thus, modern neural network methods (especially 

recurrent and deep ensembles) provide high accuracy in predicting building energy consumption. In the future, the 

role of ensemble and hybrid neural networks is expected to increase, as well as the consideration of physical 

constraints to improve the reliability of models [3]. 

3.3 Hybrid methods and digital twins 

No single model can fully capture the complex dynamics of building energy consumption, which has 

prompted researchers to combine different modeling approaches. Hybrid models integrate statistical methods (e.g., 

ARIMA) with neural networks (e.g., LSTM) to improve accuracy by modeling both trend/seasonality and 

nonlinear residuals. The ARIMA+ANN hybrid consistently outperforms standalone models; for example, Pierre 

et al. [12] showed that ARIMA-LSTM reduced RMSE to 7.35 compared to 49.9 for ARIMA and ~18 for LSTM 

alone. 

Another effective strategy is combining machine learning algorithms. Nam et al. [19] proposed an LSTM-

Prophet hybrid that improved short-term electricity demand forecasts compared to conventional LSTM. 

Synergistic combinations of CNNs with simpler classifiers such as ELM have also proven effective: in the CNN-

ELM model by Sun et al. [9], the convolutional output fed into an ELM trained via the FOA algorithm, resulting 

in improved accuracy and computational speed. 

Ensemble methods (e.g., bagging, boosting, stacking) currently demonstrate the best performance by 

leveraging the diversity of individual models. Carrera et al. [10] developed a stacked ensemble combining an 

artificial neural network, CatBoost, GradientBoosting, and an XGBoost meta-regressor, achieving R² = 0.9789 in 

predicting total energy use in the Songdo smart city—outperforming any individual model. 

The digital twin concept, increasingly adopted in recent years, provides a dynamic virtual model of a 

building that is continuously updated with real-time sensor data [16]. In energy forecasting, digital twins enable 

the integration of physical (white-box) and data-driven (black-box) models, forming a gray-box framework. This 

allows real-time monitoring, adaptive forecasting, and scenario testing (e.g., for thermal retrofit effects). 

According to Arsecularatne et al. [16], digital twins enhance building sustainability by optimizing HVAC control, 

monitoring indoor climate, and considering occupant behavior. Although still emerging, practical examples 

already exist where digital twins support heat load prediction and renovation planning. Thus, hybrid approaches—

both algorithmic (e.g., ARIMA+LSTM, CNN-ELM) and structural (digital twins)—represent a promising 

direction for post-retrofit building energy management. 

3.4. The project in Songdo (stacking model) 

As an illustrative example of the modern approach, let's consider the project in Songdo (South Korea), a 

smart city built with full monitoring systems. Given the availability of a large array of energy consumption data 

for urban facilities (the so-calledmicrocities within Songdo), researchers set out to make a short-term forecast of 

total energy consumption for a 3-month horizon[10]. Carrera et . proposed a multi-level forecasting model 

consisting of several stages. First, basic forecasts are built using various machine learning algorithms (in particular, 

CatBoost gradientboosting, multilayer neural network, etc.) Next, they are combined by stacking: a meta-

regression model is formed, which is trained on the outputs of the base models, predicting the final consumption 

value. The meta-regressor used is XGBoost (gradientboosting of solutions with weights that optimally combine 

the contribution of each base model. The resulting ensemble model demonstrated extremely high accuracy: the 

coefficient of determination R²=0.9789, the rootmeansquare error (RMSE) was reduced to ~2%, which 

significantly exceeds the accuracy of each individual model. In fact, the forecast error at the city block level was 

only ~2-3% of actual consumption, which is an excellent indicator for such a longhorizon (90 days). Songdo's 

experience confirms the effectiveness of meta-ensembles for energy management tasks of entire groups of 

buildings. Interestingly, the baseline models included both classical algorithms (treeensembles) and ANNs; this 

emphasizes that the best results are achieved by combining heterogeneous approaches. Currently, the stacking 

approach, successfully tested in Songdo, can be transferred to the level of individual buildings (for example, 

creating an ensemble of building heat supply forecasts from different models - regression, LSTM, etc. - with 

subsequent meta-aggregation). Such a meta-model approach allows compensating for the shortcomings of 

individual methods and obtaining consistently high forecast accuracy. 

3.5. Forecasting software tools 

Implementation of forecasting models is possible with the use of various software tools. Energy modeling 

packages such as EnergyPlus, DOE-2/eQUEST, TRNSYS, etc. are widely used for deterministic modeling of 

building energy consumption. They allow for detailed simulations of thermal processes in a building before and 
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after thermal modernization. In particular, in [6], the DOE-2 (eQUEST) program was used to generate a training 

sample (results of numericalexperiments), on the basis of which regression models of energy consumption were 

built. , in the dissertation[2], the thermalmodes of a building were modeled in the EnergyPlus environment, and 

the results were used for approximation by multivariate regression. The obtained simulation data can also be used 

to train or validate neural network models - this approach is the basis of digital twins. An indirect method of 

evaluation is the use of Building Energy Modeling (BEM) at the design stage: integration with BIM systems allows 

to predict savings from thermal modernization even before reconstruction[22]. 

To build actual predictive algorithms (regressions or neural networks), the most popular tools are universal 

programming languages and scientific computing libraries. In particular, Python with the scikit-learn, StatsModels 

(regression analysis, ARIMA), TensorFlow, and PyTorch (neural networks) libraries provides a full cycle - from 

data processing to model training and forecasting. R is also used for statistical forecasting of time series and 

building models based on machine learning methods. Among the engineering packages, MATLAB with System 

Identification, Deep Learning, etc. toolboxes is often used, mainly in academic research. Commercial building 

management systems (BMS/BEMS) increasingly include load forecasting modules. According to [13], modern 

building energy management systems (BEMS) in smart cities actively use the Internet of Things to collect big data 

and perform short-term forecasts of electricity consumption, which allows for better load balancing and prevention 

of peakoverloads. In general, the availability of flexible programming tools greatly simplifies the implementation 

of the methods discussed in practice. For example, machine learning models for real-time building monitoring can 

now be deployed in the Google Cloud or Azure cloud platform [17]. At the same time, there is still a need for 

specialized software products focused specifically on energy consumption forecasting: such solutions could 

integrate into existing BEMS and automate the process of data collection, model training, and issuing forecasts to 

the operator. 

3.6. Practical application cases 

The methods for forecasting energy consumption in buildings discussed above are already being used in 

real projects. Here are some illustrative examples. Office buildings: in the context of dynamic officeschedules and 

microclimate effects, ANN methods demonstrate high efficiency. A study for an office center in Houston (USA) 

showed that taking into account employee presence data significantly improves the accuracy of electricity 

consumption forecasts; the built LSTM model was able to predict the daily load curve with an error of only ~2% 

[14]. This opens up opportunities for the introduction of proactive HVAC control systems in offices, such as pre-

cooling the premises before employees arrive according to the forecast, which increases comfort and reduces 

peakloads. Shopping centers and supermarkets: they are characterized by significant internal heatgain and 

dependence on the outside temperature. Study [4] assessed the impact of climate change on supermarket energy 

consumption based on regression analysis of operational data: it was confirmed that after insulation (reduction of 

heat loss), electricity consumption may increase slightly due to a greater need for cooling, while gas consumption 

for heating is significantly reduced [4]. Such forecasts help retail managers plan the modernization of HVAC 

systems and evaluate the economic effect. Data centers: Google, in collaboration with DeepMind, successfully 

used a deep neural network to optimize the cooling of its data centers back  2016. With the help of an ensemble of 

several deep neural networks trained on large amounts of historical sensor data (temperatures, fanspeeds, etc.), it 

was possible to predict the PUE (power usage efficiency ratio) in real time and recommend optimalcooling system 

settings [15]. The implementation of this system made it possible to reduce energy consumption for airconditioning 

by up to 40%, which is equivalent to 15% savings in total data center energy costs. This case study clearly 

demonstrates the potential of ANNs and reinforcement learning in energy efficiency tasks: although the data center 

is not a "building" in the classical sense, the principles are the same - model-based microclimate forecasting and 

optimization. Examples in Ukraine: in our country, predictive methods for energy consumption in buildings are 

still being implemented locally, mainly as part of scientific experiments or pilot projects of energy service 

companies. In particular, in the above-mentioned thesis by Bilous (NTUU "KPI", 2018), a heating control system 

with a predictive module was developed on the basis of the university building - the model takes into account the 

temperature of the outside air and the thermalinertia of the building and predicts the required level of heat 

consumption, which made it possible to save up to 12-15% of thermal energy without losingcomfort[2]. Some 

Ukrainian cities (e.g., Vinnytsia, Lviv) are experimenting with installing monitoring systems in residential high-

rise buildings and hospitals as part of their energy efficiency programs; the data collected can serve as a basis for 

implementing predictive algorithms, in particular in heat points. Thus, the experience of using these methods in 

real-world conditions - from office centers to industrial facilities and municipal buildings - is being gained, which 

confirms their practical value. 

3.7. Comparative analysis of methods 

The diversity of approaches to forecasting building energy consumption calls for a comparative evaluation of their 

effectiveness. Table 1 summarizes selected studies that represent different classes of models, including artificial 

neural networks (ANN), hybrid models, digital twins, and machine learning ensembles. Unlike classical regression 

techniques discussed in section 3.1, these approaches emphasize learning from complex nonlinearpatterns and 

integrating real-time or multivariate data inputs. 
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Table 1 - Comparative characteristics of building energy consumption forecasting methods (selected sources) 

Source Method(s) / Model Forecast Object / Data 
Key Results / 

Accuracy 

Pierre et al., 2023 

[12] 

Hybrid ARIMA + 

LSTM 

National gridpeakloads 

(Benin) 

RMSE reduced to 7.35 

vs 49.90 (ARIMA); 

hybrid 

outperformsstandalone 

So et al., 2023 [13] 

BiGTA-Net (Bi-

GRU + TCN + 

Attention) 

University building, 

dailyelectricity 

MAPE 5.37%; ~37% 

more accurate than 

CNN/LSTM 

Anan et al., 2024 

[14] 

Occupant-aware 

LSTM 

Office building, 1-min 

intervals 

MAE ~2%; 

outperformed 

ARIMA; occupancy 

data improved 

precision 

Carrera et al., 2021 

[10] 

Ensemble (ANN + 

CatBoost + 

XGBoost) 

Smart city (Songdo), 3-

month energy forecast 

R² = 0.9789; MAE 

~2%; validated meta-

regression ensemble 

Arsecularatne et al., 

2024 [16] 
Digital twins + AI Commercial buildings 

Real-time 

optimization; 

documented savings 

up to 20% 

Nam et al., 2020 

[19] 

Hybrid LSTM + 

Prophet 

Microgrid, hourly data 

(Korea) 

MAE reduced by ~5–

7% vs pure LSTM 

Liu et al., 2023 [3] 
Review of 116 data-

driven studies 

Zone/building/microgrid 

levels 

30–80% savings 

confirmed with hybrid 

+ hyperparameter 

optimization 

Fan et al., 2019 [20] 
ML comparison 

(RF, SVM, MLP) 

5 building types, 

quarterly data 

RF best for offices, 

MLP for 

retail/hospitals; 

average error 5–8% 

Mohandes et al., 

2019 [8] 

Review: ANN in 

energy analysis 
Various building types 

ANNs reached 95–

99% accuracy with 

deep networks 

(GRNN, RNN) 

Ramli et al., 2023 

[17] 

ANN vs ML 

models review 

Mixed-typebuildings 

(2010–2022) 

DNNsoutperform 

regression and fuzzy 

models in most cases 

Lu et al., 2019 [18] 
Theoretical analysis 

of ANN issues 
- 

Highlighted key gaps: 

data scarcity, 

hyperparametertuning 

Yin et al., 2024 [1] 
Review: 116 ANN 

studies 

Various building life 

cycle stages 

Best practices: 

ensemble learning, 

data preprocessing, 

optimization 
Note: abbreviations in the table: ANN - artificial neural network; MLP - multilayerperceptron; RBF - radial basis function; SVR - 

support vector regression; ELM - extreme learning; FOA - FruitFly Optimization Algorithm; GRU - gatedrecurrentunit; TCN - temporal 

convolutional network; RF - Random Forest; DT - digital ; EUI - specific energy consumption. Errors are based on primary sources: MAPE - 
meanabsoluterelative error, RMSE - rootmeansquare , R² - coefficient of determination, MAE - meanabsolute error. 

 

Deep learning models such as LSTM, Bi-GRU, and hybrid ensembles typically demonstrate the highest 

accuracy. For example, the BiGTA-Net architecture achieved a meanabsolutepercentage error (MAPE) of 5.37%, 

significantly outperformingconventional CNN and LSTM approaches. Similarly, hybrid ARIMA-LSTM models 

have shown 2–3 times lower rootmeansquare error (RMSE) than their standalonecounterparts. Digital twin 

technology is gainingtraction due to its ability to simulate and optimize consumption in real time, with documented 

savings of 10–20%. Although still under development, digital twins are expected to play a critical role in intelligent 

energy management. 

The evidence suggests that hybrid and ensemble methods (positions 1–5 in the table) 

consistentlyoutperform single-model approaches and are best suited for post-retrofit forecasting tasks or urban-



 

          ISSN 1813-5420 (Print).  Енергетика: економіка, технології, екологія. 2025. № 4    

                                                                                        ISSN 2308-7382 (Online) 

 

 

68 

scale smart energy systems. However, the suitability of any given method remains dependent on data availability, 

interpretability requirements, and implementation costs. Ultimately, the prevailing trend is toward integrated AI-

driven forecasting frameworks that combine high accuracy with operational adaptability. 

The table 1 presents a condensed comparison of methods based on the reviewed literature. Traditional 

regression models ([2], [4], [5], [6], [7]) remain effective for preliminaryestimations and energy audits, particularly 

when interpretability and limited data are prioritized. However, their accuracy significantly decreases in highly 

dynamic or nonlinear contexts, such as post-retrofitbuildings. 

Artificial neural networks and deep learning architectures ([8], [10], [11], [13], [15], [17]) consistently 

demonstrate superior accuracy, especially when trained on granular time-series data and enriched with external 

variables (e.g., weather, occupancy). These models are especially suitable for modern buildings with complex 

HVAC systems and smart metering infrastructure. 

Hybrid and ensemble models ([12], [14], [16]) outperform both individual statistical and neural models by 

combining their strengths. They are particularly recommended for forecasting under uncertainty, such as changing 

occupancypatterns or evolving energy profiles after thermal modernization. 

Finally, review and meta-analytical studies ([1], [3], [18], [20], [21]) confirm a shift toward hybridization, model 

stacking, and the integration of digital twins. These trends indicate the growing importance of adaptive, scalable, 

and self-learning systems for intelligent building energy management. 

Conclusions. This review has established that deep learning methods, particularly artificial neural networks 

such as LSTM, GRU, and their ensembles, currently provide the highest accuracy in forecasting building energy 

consumption. These models significantly outperform traditional regression techniques in dynamic and post-retrofit 

contexts, with typical forecast errors reduced to 2–5%. Nevertheless, regression-based models retain value for 

baseline diagnostics, energy audits, and scenarios requiring interpretability or limited input data. 

A key limitation identified in the literature is the challenge of model generalization due to variability in 

building types, occupancypatterns, and climate zones. Inadequate training data, insufficient integration of physical 

knowledge into black-box models, and the lack of standardized evaluation frameworksremainpersistentobstacles. 

Furthermore, many models are still calibrated for stable operational conditions and perform poorly when building 

characteristics change after thermal modernization. 

The study highlights the particular promise of hybrid and ensemble approaches—such as ARIMA+LSTM, 

CNN-ELM, and stackingregressors—which effectively combine trend detection and nonlinearresidual learning. 

These architectures demonstrated superior accuracy and adaptability across comparative benchmarks. Of special 

interest are digital twins, which enable real-time energy optimization based on synchronized virtual-physical 

models. Their integration into building energy management systems represents a strategic direction for increasing 

operational efficiency. 

Future research should focus on the development of transferable hybrid models that can 

accommodatestructural, behavioral, and climatic changes in energy profiles. Special attention should be given to 

domain-informed model training, scalable deployment frameworks, and the use of synthetic or augmented data to 

mitigate dataset limitations. Expanding the application of digital twin technologies in post-retrofit building stock, 

particularly in emerging economies such as Ukraine, is a priority area for both academic investigation and policy 

support. 
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СУЧАСНІ МЕТОДИ  

ПРОГНОЗУВАННЯ ЕНЕРГОСПОЖИВАННЯ БУДІВЕЛЬ 
 

Актуальність дослідження зумовлено зростаючою потребою підвищення енергоефективності 

будівель шляхом термомодернізації, а також необхідністю у точних інструментах прогнозування, що 

дозволяють здійснювати ефективне управління енергоспоживанням. В умовах змін клімату та зростання 

вартості енергоресурсів вибір оптимальних моделей прогнозування набуває стратегічного значення для 

житлово-комунального господарства та об’єктів міської інфраструктури. 

Метою дослідження є обґрунтування сучасних підходів до прогнозування енергоспоживання 

будівель з урахуванням заходів термомодернізації на основі аналізу регресійних, нейронних і гібридних 

моделей з метою виявлення їхніх переваг, обмежень та практичної ефективності. 

Методологія. Проведено порівняльний аналіз результатів актуальних досліджень, що 

застосовують статистичні, нейромережеві та комбіновані моделі прогнозування. Оцінено точність, 

масштабованість, гнучкість моделей, а також їх здатність адаптуватися до змін після 

термомодернізації. Особливу увагу приділено архітектурам глибокого навчання (LSTM, GRU), гібридним 

комбінаціям (ARIMA+LSTM, CNN+ELM) та технології цифрових двійників. 

Результати. Установлено, що найвищу точність прогнозування забезпечують нейромережеві 

моделі, зокрема глибокі архітектури та ансамблі. Виявлено, що середня абсолютна похибка у таких 

підходів не перевищує 3–5%. Регресійні методи, попри нижчу точність, залишаються актуальними для 

базової оцінки впливу кліматичних факторів. Доведено ефективність гібридних підходів, що комбінують 

трендову компонену зі здатністю нейронних мереж описувати залишкову нелінійність. Виявлено 

перспективність цифрових двійників як інструменту прогнозно-керованої енергетики. 

Висновки. Доведено, що ефективне прогнозування енергоспоживання можливе лише за умови 

врахування змін, зумовлених термомодернізацією, та застосування гнучких моделей, здатних 

адаптуватися до нових умов експлуатації будівель. Визначено, що інтеграція методів штучного 

інтелекту з фізичними моделями та цифровими двійниками підвищує точність і корисність прогнозів для 

практичного енергоменеджменту. 

Перспективи подальших досліджень. Доцільним є розвиток методів комбінованого моделювання з 

урахуванням поведінкових чинників споживання, а також розширення емпіричної бази для оцінювання 

ефективності цифрових двійників у контексті модернізованих будівель різного призначення. 

Ключові слова: енергоефективність будівель, прогнозні моделі, термомодернізація, глибоке 

навчання, цифрові двійники, системи управління енергоспоживанням. 
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