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MODERN METHODS FOR PREDICTING
BUILDING ENERGY CONSUMPTION

The relevance of the study is driven by the growing need to enhance the energy efficiency of buildings
through thermomodernization and the demand for accurate forecasting tools to ensure effective energy
management. In the context of climate change and rising energy prices, the selection of optimal forecasting models
has become a critical task for housing and communal services as well as urban infrastructure.

The aim of the study is to substantiate contemporary approaches to forecasting building energy
consumption considering thermomodernization measures, based on the analysis of regression, neural, and hybrid
models, in order to identify their advantages, limitations, and practical effectiveness.

Methodology. A comparative analysis of recent studies was conducted, covering statistical, neural network,
and hybrid forecasting models. The accuracy, scalability, flexibility, and adaptability of models to post-retrofit
conditions were assessed. Particular attention was paid to deep learning architectures (LSTM, GRU), hybrid
combinations (ARIMA+LSTM, CNN+ELM), and digital twin technologies.

Results. It was established that the highest forecasting accuracy is achieved by neural network models,
particularly deep architectures and ensembles, with average errors not exceeding 3-5%. Although regression
methods are less accurate, they remain useful for baselineestimates and evaluating the impact of climatic
variables. The effectiveness of hybrid approaches that combine trend modeling with neural network-based residual
learning was demonstrated. The potential of digital twins as a tool for predictive and adaptive energy management
was identified.

Scientific novelty. For the first time, forecasting models were systematized in the context of building
thermomodernization, with the identification of optimal approaches for different types of tasks. The relevance of
applying intelligent forecasting systems integrated with digital twins as a new paradigm in building energy
management was substantiated.

Conclusions. It was proven that accurate forecasting of energy consumption is only possible when
accounting for changes caused by thermomodernization and applying flexible models capable of adapting to new
building operation conditions. It was determined that the integration of artificial intelligence methods with
physical modeling and digital twinsenhances the accuracy and applicability of forecasts for practical energy
management.

Prospects for further research. It is advisable to develop combined modeling methods that consider
behavioral factors in consumption, and to expand the empirical base for assessing the effectiveness of digital twins
in retrofittedbuildings of various types.

Keywords: building energy efficiency, predictive models, thermalretrofit, deep learning, digital twins,
energy management systems.

Introduction

Despite the significant progress in energy-efficient technologies and the growing demand for building
modernization, the issue of accurate forecasting of energy consumption remains a complex and insufficiently
resolved task. Thermal modernization fundamentally changes the thermophysicalproperties and operating
conditions of buildings, which leads to non-linear and dynamic changes in energy demand that traditional models
are often unable to captureadequately. At the same time, climate change, the spread of renewable energy sources,
and the implementation of smart energy systems intensify the need for adaptive and predictive energy management
tools. In this context, the development of forecasting methods that take into account the effects of
thermalretrofitting and reflect the real-time state of the building is not only a scientific challenge but also a practical
necessity for ensuring energy sustainability. This task intersects with broader interdisciplinary problems, including
the integration of artificial intelligence into engineering systems, the optimization of building performance based
on sensor data, and the creation of digital twins as a basis for intelligent energy control. The lack of unified
forecasting solutions capable of combining physical modeling, statistical inference, and machine learning under
conditions of structural and operational change highlights the urgency of comprehensive research in this field.
Addressing this problem is essential not only for reducing energy costs but also for achieving broader goals of
carbon reduction, decarbonization of the building sector, and compliance with international sustainability
standards.
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Analysis of recent research and publications

The analysis of scientific sources allows us to distinguish four major directions of research that define the
current paradigm of predicting building energy consumption with consideration of thermal modernization:
regression modeling, artificial neural networks, hybrid methods and digital twins, and practical model validation.

The first direction involves the use of regression-based methods to quantitatively assess the impact of
climatic, design, and behavioral factors on energy consumption. In the work of C. Yin, C. Han, A. Li, X. Liu, and
Y. Liu, a comprehensive review of ANN-based models emphasized the limitations of linear regression in capturing
complex interdependencies [1]. I. Bilous developed a regression model for forecasting thermal load in buildings
by incorporatingairtemperature and structuralinertia, achieving 12-15% energy savings [2]. H. Liu, J. Liang, Y.
Liu, and H. Wu also confirmed the limited applicability of classical regression techniques in highly dynamic post-
retrofit environments [3]. M. R. Braun, H. Altan, and S.B.M. Beck applied multiple regression to a UK
supermarket case and predicted a 2.1% increase in electricity demand and 13% decrease in gas use under future
climate conditions [4]. I. Korolija, Y. Zhang, L. Marjanovic-Halburd, and V. I. Hanbyderived regression-based
equations for 3840 UK office models [5], while S. ShamsAmiri, M. Mottahedi, and S. Asadi used simulated DOE-
2 data to estimate energy indicators for U.S. commercial buildings [6].

Z. Zhang, C. Deb, S.-E. Lee, J. Yang, and K. W. Shah applied SVR with differentialevolution optimization
to achieve a meanabsolutepercentage error (MAPE) of only 3.8% [7].Further studies in this direction should focus
on enhancing regression models by incorporatingretrofit-sensitive variables and nonlinear interactions.

The second direction centers on the application of artificial neural networks (ANNSs) to
capturenonlineardependencies between multiple input variables and energy use. S. R. Mohandes, X. Zhang, and
A. Mahdiyarreviewed over 90 studies, highlighting the shift from traditional MLPs to deep and recurrent neural
networks [8]. K. Sun, Z. Dou, B. Zhang, and H. Zou proposed a CNN-ELM hybrid with FOA optimization that
significantly improved both accuracy and speed [9]. B. Carrera, S. Peyrard, and K. Kim developed a stacking
ensemble model for Songdo smart city combining CatBoost, ANN, and XGBoost, which achieved R* = 0.9789
and MAE ~ 2% [10]. In a subsequent study, B. Carrera and K. Kim implemented an encoder—decoder LSTM
architecture for urban energy forecasting [11]. A. A. Pierre,S.A. Akim, A.K. Semenyo, and B. Babiga
demonstrated that an ARIMA-LSTM hybrid yielded the lowest RMSE (7.35) when compared to standalone
models [12]. D. So, J. Oh, I. Jeon, J. Moon, M. Lee, and S. Rho created the BiGTA-Net model integrating GRU,
TCN, and attention, outperformingconventional methods with MAPE = 5.37% [13]. M. Anan, K. Kanaan, D.
Benhaddou, and N. Nasser further improved prediction accuracy by including occupancy data in the LSTM
architecture, reducing error to 2% [14].Future research should prioritize transfer learning, explainability of ANN
models, and strategies to overcome data scarcity in retrofittedbuildings.

The third direction involves hybrid and ensemble approaches that leverage the strengths of statistical and
Al models. R. Evans and J. Gao pioneered deep learning applications for real-time cooling optimization in Google
data centers, cutting energy use by 40% [15]. B. Arsecularatne, N. Rodrigo, and R. Changoutlined the growing
role of digital twins in online forecasting and adaptive control [16]. S.S. MdRamli, M.N. Ibrahim, A. Mohamad,
K. Daud, A.M.S. Omar, and N.D. Ahmad confirmed that ANN models generallyoutperform SVM and regression-
based methods in various building contexts [17]. C. Lu, T. Hong, and L. Yang identified several challenges in
ANN deployment, such as hyperparametertuning, model interpretability, and insufficient training data [18].

Y. Nam, Y. Hwangbo, and J. Yoo developed an LSTM-Prophet hybrid that improved short-term
forecasting accuracy over standalone LSTM [19].Further work should investigate the integration of hybrid models
into cloud-based control platforms and their robustness under changing operational conditions.

The fourth direction focuses on real-world validation of forecasting methods in various building types. C.
Fan, F. Xiao, C. Madsen, K. Wang, and S. J. Zuo compared ML models for offices, retail, and healthcare facilities,
identifying MLP and Random Forest as optimal for different use cases [20]. T. Ahmad, H. Chen, M. A. Butt, B. A.
Bawazir, and S. Sreeraj emphasized the advantages of hybrid approaches after analyzing over 50 studies published
between 2010 and 2020 [21]. V. I. Deshko proposed the use of nonlinear multivariate regression to evaluate
external and internal factors influencing building energy behavior, contributing to a broader modeling foundation
[22].Future investigations should aim at expanding case studies across climaticzones and integrating forecasting
modules into municipal energy management systems.

Despite the growing academic and political attention to the Arctic, several critical aspects of the problem
remain insufficiently explored. There is still a lack of comprehensive understanding of the geopolitical
attractiveness of the region in the context of global strategic transformation. The resource and economic priorities
of leading Arctic states are often examined in isolation, without comparative assessment of their competing
models. China’sArctic strategy, despite its increasing relevance, remains under-analyzed, particularly regarding
informal instruments of geo-economic presence. Legal uncertainty, the absence of universal regulatory
mechanisms, and the potential impact of Arctic competition on the global balance of power also remain unresolved
challenges in international discourse.

This study aims to address these gaps by offering a systematic analysis of both Arctic and non-Acrctic state
strategies, comparing economic models of regional development, and identifying sources of institutional
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instability. By applying an interdisciplinary approach that integrates geopolitical, economic, and legal dimensions,
the research will deepen understanding of the mechanisms driving Arctic competition and contribute to a more
coherent view of the region’s role in shaping the evolving architecture of international relations.

Research aim - to substantiate contemporary approaches to forecasting building energy consumption
considering thermomodernization measures, based on the analysis of regression, neural, and hybrid models, in
order to identify their advantages, limitations, and practical effectiveness.

Research objectives:

1.To systematize the principal methods for predicting building energy consumption using regression
analysis, artificial neural networks, and hybrid models.

2.To analyze how thermomodernization factors are incorporated into these predictive models.

3.To determine future directions for improving forecasting approaches in terms of accuracy, adaptability,
and integration with energy efficiency management systems.

3.1. Regression models

Statistical regression models have long been employed in predicting building energy consumption due to
their transparency, computational efficiency, and suitability for baselineassessments. Multiple linear regression
(MLR) remains a foundational approach that enables the estimation of energy use based on independent variables
such as outdoortemperature, building envelopeproperties, and operational schedules. For example, in the analysis
of a UK supermarket, MLR was applied to identify climate sensitivity in consumption trends, revealing the
relationship between risingtemperatures and changes in electricity and gas usage [4]. Similarly, for officebuildings,
simulation-based regression models have been developed to predict annualheating and cooling demands as a
function of design and usage parameters [5]. Another notable study in the U.S. context utilized regression
techniques on DOE-2 simulation data to generate performance indicators across commercial building types,
accounting for 17 architectural and operational factors [6].

Beyond MLR, autoregressive models such as ARIMA are frequently adopted for short-term energy
forecasting due to their ability to model seasonal and trend components. Nevertheless, these models often face
limitations when nonlinear dynamics are dominant or post-retrofit conditions significantly alter consumption
patterns. To mitigate this, extensions like ARIMAX incorporate exogenous weather variables, while hybridization
with machine learning techniques is increasingly pursued (as explored in Section 3.3).

Support vector regression (SVR) and decisiontreeensemblesrepresent advanced statistical learning methods
that expand upon classical regression. SVR, particularly when optimized using metaheuristic algorithms such as
differentialevolution, has demonstrated improved accuracy in forecasting high-resolution load profiles [7].
Meanwhile, regression trees and random forests offer flexible alternatives capable of capturing complex
interactions between features. These methods are often further enhanced in ensemble architectures, providing a
bridge between interpretable models and machine learning performance.Overall, while regression-based models
may underperform in highly dynamic or non-linear contexts, they remain valuable for their interpretability,
adaptability to limited datasets, and role in initial scenario analysis, especially in early-stage assessments of
thermomodernization impacts.

3.2 Methods of artificial neural networks

The use of ANNsfor modeling building energy consumption has been intensively studied since the 1990s
and is currently recognized as one of the most effective approaches [1]. The advantage of neural networks is the
ability to take into account nonlinearrelationships between many factors (weather conditions, usageschedule,
building characteristics, etc.) and energy consumption. Classical multilayerperceptrons (MLPs) have been widely
used as a "black box" for predicting the daily or hourly load of a building. However, the choice of the optimal
architecture and the tuning of MLP scales was traditionallydonemanually, which could limit the accuracy. Modern
research is focused on improving the training algorithms and structure of MLPs. For example, in 2019, Lu et al.
analyzed 12 different neural network architectures, pointing out open problems in their application - the need for
a large amount of training data, optimization of hyperparameters, and interpretation of results [18]. DimitriGuillot
et al. (2021) reviewed the features and limitations of neural networks in the context of architectural design, which
confirmed the interdisciplinary nature of this topic [1]. According to reviews [8], [17], there is a transition from
traditional learning algorithms (gradientdescent, methods of direct error propagation) to the use of modern types
of networks - radial basis networks, recurrent networks, etc. to improve convergence and accuracy. In particular,
recurrent neural networks of longshort-term memory (LSTM) are currently showing the best results in predicting
time series of consumption. In a study [14], an LSTM model trained on one-minute data from an office building,
taking into account the presence of people, outperformed traditional ARIMA and SVR, achieving a significantly
lower error (conditional error rate of 2.05 versus significantly higher values for other models) [14]. Thus, the
LSTM is able to take into account the time dynamics of thermal processes and changes in operatingmodes after
the implementation of energy-saving measures. Another area is convolutional neural networks (CNNs), which are
typically used to process spatial data or detect local patterns in a series. In energy forecasting tasks, CNNs are used
to automatically extract features from load time series, especially in combination with recurrent networks or
simplified neurons. For example, in [9], a hybrid is proposed where the CNN acts as a feature extractor and the
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output is passed to a simple neural classifier such as ELM. This approach improved the accuracy and speed of
calculation compared to the standard CNN, since the Extreme Learning Machine (ELM) instantlydetermines the
weights of the output layer without a longgradient training procedure [9]. In , attention mechanisms and other
improvements to the network architecture are gaining more and more attention. Their integration allows the
network to emphasize significant features of the input data. For example, in 2023, the BiGTA-Net model was
proposed, which combines a bidirectional GRU, a temporal convolutional network, and an attention mechanism;
this hybrid network achieved a MAPE of 5.37% and 36.9% higher accuracy than traditional deep networks when
predicting the daily power load for the training corpus [13]. Thus, modern neural network methods (especially
recurrent and deep ensembles) provide high accuracy in predicting building energy consumption. In the future, the
role of ensemble and hybrid neural networks is expected to increase, as well as the consideration of physical
constraints to improve the reliability of models [3].

3.3 Hybrid methods and digital twins

No single model can fully capture the complex dynamics of building energy consumption, which has
prompted researchers to combine different modeling approaches. Hybrid models integrate statistical methods (e.g.,
ARIMA) with neural networks (e.g., LSTM) to improve accuracy by modeling both trend/seasonality and
nonlinear residuals. The ARIMA+ANN hybrid consistently outperforms standalone models; for example, Pierre
et al. [12] showed that ARIMA-LSTM reduced RMSE to 7.35 compared to 49.9 for ARIMA and ~18 for LSTM
alone.

Another effective strategy is combining machine learning algorithms. Nam et al. [19] proposed an LSTM-
Prophet hybrid that improved short-term electricity demand forecasts compared to conventional LSTM.
Synergistic combinations of CNNs with simpler classifiers such as ELM have also proven effective: in the CNN-
ELM model by Sun et al. [9], the convolutional output fed into an ELM trained via the FOA algorithm, resulting
in improved accuracy and computational speed.

Ensemble methods (e.g., bagging, boosting, stacking) currently demonstrate the best performance by
leveraging the diversity of individual models. Carrera et al. [10] developed a stacked ensemble combining an
artificial neural network, CatBoost, GradientBoosting, and an XGBoost meta-regressor, achieving R? = 0.9789 in
predicting total energy use in the Songdo smart city—outperforming any individual model.

The digital twin concept, increasingly adopted in recent years, provides a dynamic virtual model of a
building that is continuously updated with real-time sensor data [16]. In energy forecasting, digital twins enable
the integration of physical (white-box) and data-driven (black-box) models, forming a gray-box framework. This
allows real-time monitoring, adaptive forecasting, and scenario testing (e.g., for thermal retrofit effects).
According to Arsecularatne et al. [16], digital twins enhance building sustainability by optimizing HVAC control,
monitoring indoor climate, and considering occupant behavior. Although still emerging, practical examples
already exist where digital twins support heat load prediction and renovation planning. Thus, hybrid approaches—
both algorithmic (e.g., ARIMA+LSTM, CNN-ELM) and structural (digital twins)—represent a promising
direction for post-retrofit building energy management.

3.4. The project in Songdo (stacking model)

As an illustrative example of the modern approach, let's consider the project in Songdo (South Korea), a
smart city built with full monitoring systems. Given the availability of a large array of energy consumption data
for urban facilities (the so-calledmicrocities within Songdo), researchers set out to make a short-term forecast of
total energy consumption for a 3-month horizon[10]. Carrera et . proposed a multi-level forecasting model
consisting of several stages. First, basic forecasts are built using various machine learning algorithms (in particular,
CatBoost gradientboosting, multilayer neural network, etc.) Next, they are combined by stacking: a meta-
regression model is formed, which is trained on the outputs of the base models, predicting the final consumption
value. The meta-regressor used is XGBoost (gradientboosting of solutions with weights that optimally combine
the contribution of each base model. The resulting ensemble model demonstrated extremely high accuracy: the
coefficient of determination R?>=0.9789, the rootmeansquare error (RMSE) was reduced to ~2%, which
significantly exceeds the accuracy of each individual model. In fact, the forecast error at the city block level was
only ~2-3% of actual consumption, which is an excellent indicator for such a longhorizon (90 days). Songdo's
experience confirms the effectiveness of meta-ensembles for energy management tasks of entire groups of
buildings. Interestingly, the baseline models included both classical algorithms (treeensembles) and ANNSs; this
emphasizes that the best results are achieved by combining heterogeneous approaches. Currently, the stacking
approach, successfully tested in Songdo, can be transferred to the level of individual buildings (for example,
creating an ensemble of building heat supply forecasts from different models - regression, LSTM, etc. - with
subsequent meta-aggregation). Such a meta-model approach allows compensating for the shortcomings of
individual methods and obtaining consistently high forecast accuracy.

3.5. Forecasting software tools

Implementation of forecasting models is possible with the use of various software tools. Energy modeling
packages such as EnergyPlus, DOE-2/eQUEST, TRNSYS, etc. are widely used for deterministic modeling of
building energy consumption. They allow for detailed simulations of thermal processes in a building before and
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after thermal modernization. In particular, in [6], the DOE-2 (eQUEST) program was used to generate a training
sample (results of numericalexperiments), on the basis of which regression models of energy consumption were
built. , in the dissertation[2], the thermalmodes of a building were modeled in the EnergyPlus environment, and
the results were used for approximation by multivariate regression. The obtained simulation data can also be used
to train or validate neural network models - this approach is the basis of digital twins. An indirect method of
evaluation is the use of Building Energy Modeling (BEM) at the design stage: integration with BIM systems allows
to predict savings from thermal modernization even before reconstruction[22].

To build actual predictive algorithms (regressions or neural networks), the most popular tools are universal
programming languages and scientific computing libraries. In particular, Python with the scikit-learn, StatsModels
(regression analysis, ARIMA), TensorFlow, and PyTorch (neural networks) libraries provides a full cycle - from
data processing to model training and forecasting. R is also used for statistical forecasting of time series and
building models based on machine learning methods. Among the engineering packages, MATLAB with System
Identification, Deep Learning, etc. toolboxes is often used, mainly in academic research. Commercial building
management systems (BMS/BEMS) increasingly include load forecasting modules. According to [13], modern
building energy management systems (BEMS) in smart cities actively use the Internet of Things to collect big data
and perform short-term forecasts of electricity consumption, which allows for better load balancing and prevention
of peakoverloads. In general, the availability of flexible programming tools greatly simplifies the implementation
of the methods discussed in practice. For example, machine learning models for real-time building monitoring can
now be deployed in the Google Cloud or Azure cloud platform [17]. At the same time, there is still a need for
specialized software products focused specifically on energy consumption forecasting: such solutions could
integrate into existing BEMS and automate the process of data collection, model training, and issuing forecasts to
the operator.

3.6. Practical application cases

The methods for forecasting energy consumption in buildings discussed above are already being used in
real projects. Here are some illustrative examples. Office buildings: in the context of dynamic officeschedules and
microclimate effects, ANN methods demonstrate high efficiency. A study for an office center in Houston (USA)
showed that taking into account employee presence data significantly improves the accuracy of electricity
consumption forecasts; the built LSTM model was able to predict the daily load curve with an error of only ~2%
[14]. This opens up opportunities for the introduction of proactive HVAC control systems in offices, such as pre-
cooling the premises before employees arrive according to the forecast, which increases comfort and reduces
peakloads. Shopping centers and supermarkets: they are characterized by significant internal heatgain and
dependence on the outside temperature. Study [4] assessed the impact of climate change on supermarket energy
consumption based on regression analysis of operational data: it was confirmed that after insulation (reduction of
heat loss), electricity consumption may increase slightly due to a greater need for cooling, while gas consumption
for heating is significantly reduced [4]. Such forecasts help retail managers plan the modernization of HVAC
systems and evaluate the economic effect. Data centers: Google, in collaboration with DeepMind, successfully
used a deep neural network to optimize the cooling of its data centers back 2016. With the help of an ensemble of
several deep neural networks trained on large amounts of historical sensor data (temperatures, fanspeeds, etc.), it
was possible to predict the PUE (power usage efficiency ratio) in real time and recommend optimalcooling system
settings [15]. The implementation of this system made it possible to reduce energy consumption for airconditioning
by up to 40%, which is equivalent to 15% savings in total data center energy costs. This case study clearly
demonstrates the potential of ANNSs and reinforcement learning in energy efficiency tasks: although the data center
is not a "building™ in the classical sense, the principles are the same - model-based microclimate forecasting and
optimization. Examples in Ukraine: in our country, predictive methods for energy consumption in buildings are
still being implemented locally, mainly as part of scientific experiments or pilot projects of energy service
companies. In particular, in the above-mentioned thesis by Bilous (NTUU "KPI", 2018), a heating control system
with a predictive module was developed on the basis of the university building - the model takes into account the
temperature of the outside air and the thermalinertia of the building and predicts the required level of heat
consumption, which made it possible to save up to 12-15% of thermal energy without losingcomfort[2]. Some
Ukrainian cities (e.g., Vinnytsia, Lviv) are experimenting with installing monitoring systems in residential high-
rise buildings and hospitals as part of their energy efficiency programs; the data collected can serve as a basis for
implementing predictive algorithms, in particular in heat points. Thus, the experience of using these methods in
real-world conditions - from office centers to industrial facilities and municipal buildings - is being gained, which
confirms their practical value.

3.7. Comparative analysis of methods
The diversity of approaches to forecasting building energy consumption calls for a comparative evaluation of their
effectiveness. Table 1 summarizes selected studies that represent different classes of models, including artificial
neural networks (ANN), hybrid models, digital twins, and machine learning ensembles. Unlike classical regression
techniques discussed in section 3.1, these approaches emphasize learning from complex nonlinearpatterns and
integrating real-time or multivariate data inputs.
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Table 1 - Comparative characteristics of building energy consumption forecasting methods (selected sources)
Source Method(s) / Model | Forecast Object / Data Ki?/ Results /
ccuracy
RMSE reduced to 7.35
Pierre et al., 2023 Hybrid ARIMA + National gridpeakloads vs 49.90 (ARIMA);
[12] LSTM (Benin) hybrid
outperformsstandalone

BiGTA-Net (Bi- University building MAPE 5.37%; ~37%
Soetal., 2023 [13] GRU + TCN + dailvelectricit ' more accurate than
Attention) y y CNN/LSTM
MAE ~2%;
Anan et al., 2024 Occupant-aware Office building, 1-min AR?&%T;LTESHC
[14] LST™M intervals ’ pancy

data improved
precision
R2=0.9789; MAE

Ensemble (ANN +

Carreraetal., 2021 Smart city (Songdo), 3-

[10] CatBoost + month energy forecast ~2%; va_llidated meta-
XGBoost) regression ensemble
Real-time
?g;ictjllg;atne etal., Digital twins + Al Commercial buildings docﬁpntller::tlégt;g?/ings
up to 20%
Nam et al., 2020 Hybrid LSTM + Microgrid, hourly data | MAE reduced by ~5—
[19] Prophet (Korea) 7% vs pure LSTM

30-80% savings

Liu et al., 2023 [3] Review of 116 data- | Zone/building/microgrid | confirmed with hybrid

driven studies levels + hyperparameter
optimization
RF best for offices,
ML comparison 5 building types, MLP for
Fan etal., 2019 [20] (RF, SVM, MLP) quarterly data retail/hospitals;

average error 5-8%
ANNSs reached 95—

Mohandes et al., Review: ANN in Various building tvpes 99% accuracy with
2019 [8] energy analysis gtyp deep networks
(GRNN, RNN)
Ramli et al., 2023 ANN vs ML Mixed-typebuildings rfg?‘;gﬁfﬁg?&;nz
[17] models review (2010-2022) g y

models in most cases
. . Highlighted key gaps:
Luetal., 2019 [18] Thg?rﬁe}:lcNaliigjgsw - data scarcity,
hyperparametertuning
Best practices:

Yin et al., 2024 [1] Review: 116 ANN Various building life ensemble learning,
’ studies cycle stages data preprocessing,
optimization

Note: abbreviations in the table: ANN - artificial neural network; MLP - multilayerperceptron; RBF - radial basis function; SVR -
support vector regression; ELM - extreme learning; FOA - FruitFly Optimization Algorithm; GRU - gatedrecurrentunit; TCN - temporal
convolutional network; RF - Random Forest; DT - digital ; EUI - specific energy consumption. Errors are based on primary sources: MAPE -
meanabsoluterelative error, RMSE - rootmeansquare , R? - coefficient of determination, MAE - meanabsolute error.

Deep learning models such as LSTM, Bi-GRU, and hybrid ensembles typically demonstrate the highest
accuracy. For example, the BiGTA-Net architecture achieved a meanabsolutepercentage error (MAPE) of 5.37%,
significantly outperformingconventional CNN and LSTM approaches. Similarly, hybrid ARIMA-LSTM models
have shown 2-3 times lower rootmeansquare error (RMSE) than their standalonecounterparts. Digital twin
technology is gainingtraction due to its ability to simulate and optimize consumption in real time, with documented
savings of 10-20%. Although still under development, digital twins are expected to play a critical role in intelligent
energy management.

The evidence suggests that hybrid and ensemble methods (positions 1-5 in the table)
consistentlyoutperform single-model approaches and are best suited for post-retrofit forecasting tasks or urban-
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scale smart energy systems. However, the suitability of any given method remains dependent on data availability,
interpretability requirements, and implementation costs. Ultimately, the prevailing trend is toward integrated Al-
driven forecasting frameworks that combine high accuracy with operational adaptability.

The table 1 presents a condensed comparison of methods based on the reviewed literature. Traditional
regression models ([2], [4], [5], [6], [7]) remain effective for preliminaryestimations and energy audits, particularly
when interpretability and limited data are prioritized. However, their accuracy significantly decreases in highly
dynamic or nonlinear contexts, such as post-retrofitbuildings.

Artificial neural networks and deep learning architectures ([8], [10], [11], [13], [15], [17]) consistently
demonstrate superior accuracy, especially when trained on granular time-series data and enriched with external
variables (e.g., weather, occupancy). These models are especially suitable for modern buildings with complex
HVAC systems and smart metering infrastructure.

Hybrid and ensemble models ([12], [14], [16]) outperform both individual statistical and neural models by
combining their strengths. They are particularly recommended for forecasting under uncertainty, such as changing
occupancypatterns or evolving energy profiles after thermal modernization.

Finally, review and meta-analytical studies ([1], [3], [18], [20], [21]) confirm a shift toward hybridization, model
stacking, and the integration of digital twins. These trends indicate the growing importance of adaptive, scalable,
and self-learning systems for intelligent building energy management.

Conclusions. This review has established that deep learning methods, particularly artificial neural networks
such as LSTM, GRU, and their ensembles, currently provide the highest accuracy in forecasting building energy
consumption. These models significantly outperform traditional regression techniques in dynamic and post-retrofit
contexts, with typical forecast errors reduced to 2-5%. Nevertheless, regression-based models retain value for
baseline diagnostics, energy audits, and scenarios requiring interpretability or limited input data.

A key limitation identified in the literature is the challenge of model generalization due to variability in
building types, occupancypatterns, and climate zones. Inadequate training data, insufficient integration of physical
knowledge into black-box models, and the lack of standardized evaluation frameworksremainpersistentobstacles.
Furthermore, many models are still calibrated for stable operational conditions and perform poorly when building
characteristics change after thermal modernization.

The study highlights the particular promise of hybrid and ensemble approaches—such as ARIMA+LSTM,
CNN-ELM, and stackingregressors—which effectively combine trend detection and nonlinearresidual learning.
These architectures demonstrated superior accuracy and adaptability across comparative benchmarks. Of special
interest are digital twins, which enable real-time energy optimization based on synchronized virtual-physical
models. Their integration into building energy management systems represents a strategic direction for increasing
operational efficiency.

Future research should focus on the development of transferable hybrid models that can
accommodatestructural, behavioral, and climatic changes in energy profiles. Special attention should be given to
domain-informed model training, scalable deployment frameworks, and the use of synthetic or augmented data to
mitigate dataset limitations. Expanding the application of digital twin technologies in post-retrofit building stock,
particularly in emerging economies such as Ukraine, is a priority area for both academic investigation and policy
support.
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«KuiBchknmii moJtitexniunmnii incrutyT iMeHi Iropst Cikopcbkoro»

CYYACHI METOIHU
IMPOI'HO3YBAHHSA EHEPI'OCITIO’KUBAHHS BY IIBEJIb

Axmyanvricms 00CHIONHCEHHA 3YMOBNIEHO 3POCMAIOY0I0 NompedoIo NioGUWEeHHs eHep2oepeKmueHOCi
0y0igenb WAAXOM MEPMOMOOePHI3ayii, a MAaKo*C HeOOXIOHICMIO ¥ MOYHUX THCIPYMEHMAX NPOSHO3Y8AHHS, U0
00380A10Mb 30iUCHIOBAMU e eKMUBHE YNPAGLIHHA eHEP2OCTIONCUBANHAM. B ymosax smin kaiimamy ma 3pocmanis
8apmocmi eHep2opecypcis ubip ONMUMATLHUX MOOeNell NPO2HO3Y8aNHA HAOYBAE CMPamMe2iuHo20 3HaueHHs OJis
ACUMAOB0-KOMYHANBHO20 20CNO0APCMEa Ma 00 '€Kmie MicbKoi ingpacmpykmypu.

Memoto OocniOxcenns € O0OIPYHMYBAHHA CYYACHUX RNIOX00i8 00 NPOSHO3VBAHHA €HepP20CNONCUBAHHS
0yodigenv 3 Ypaxy8auHaAM 3ax00i8 MepMoMOOepHI3ayii Ha OCHOBI AHANIZY pe2pecillHUX, HelUpOHHUX i 2iOpUOHUX
Modenell 3 Memoro 8UAGIeHHs IXHIX hepesae, 0OMedcenb ma NPaKmuyHoi egheKmusHoCmi.

Memoodonocia. Ilposedeno nopieuanrbHutl  ananiz pe3yibmamie axmyaibHux 0O0CHiOdCeHb, Wo
3ACMOCco8yIoms CMAMUCMUYHI, Helipomepedicesdi ma KomMOinosani modeni npoeno3yeanus. Oyineno moynicmo,
macuimaboeamicms, SHyuKicme Moodelell, a maxodxc Ix 30amHicmb adanmyeamucsi 00 3MiH  NiCAA
mepmomooeprizayii. Ocobnusy ysazy npudineno apximexmypam enubokozo nasuanns (LSTM, GRU), eibpuonum
xkombinayiam (ARIMA+LSTM, CNN+ELM) ma mexnonozii yugposux 08itiHUKIg.

Pesynomamu. Ycmanoeneno, wo Haiiguwyy mouHiCmb NpOZHO3YE8AHHA 3a0e3neuyiomsb Helupomepedicesi
MoOerni, 30Kpema 2iuboKi apximekmypu ma avcamoni. Buseieno, wo cepeous abconomua noxubka y maxux
nioxodie ne nepesuwye 3—5%. Peepeciiini memoou, nonpu HudiC4y mouHiCmb, 3aIUMAIOMbCA AKMYATbHUMU O
6a3080i oyinku 6naUBY KAiMamuyHux gpakmopis. [ogedeno epexmugnicms iopuoHux nioxoois, wo KOMOiHy My
MpeHO08y KOMNOHEHY 3i 30amHICIO HEUPOHHUX Mepedc ONUCYBamu 3aluKosy HemiHiunicms. Buseneno
nepCcnekmusHicims Yyugposux 08iUHUKIE AK IHCTNPYMEHMY NPOSHO3HO-KEPOBAHOT eHepeemuKu.

Bucnosxu. Jlogedeno, wo epexmuene npocHO3Y8AHHA €HEPLOCTIONCUBAHHA MONCIUSE Juule 3ad YMO8U
6PAXYBAHHA 3MIH, 3YMOGIEHUX MePMOMOOEPHI3ayicio, ma 3aCMOCY6AHHA 2HYUKUX MoOenel, 30amHux
adanmysamuca 00 HOBUX YMO8 eKkcnayamayii Oydigenv. Busnaueno, wjo inmezpayis memooig WmyuHo20
iHmenexmy 3 QizuUHUMU MOOEAMU MA YUPPOSUMU OGIUHUKAMU RIOBUULYE MOYHICMb | KOPUCHICMb NPOSHO3I8 OJis
NPAKMUYHO20 eHEeP2OMEHEONCMEHMY.

Iepcnexmusu nodanvuiux 00cnioxcens. JJoyinbHuUM € po36UMoK Memooie KOMOIHOBAHO20 MOOETOBAHHA 3
VPAaXy8aHHAM NOBEOIHKOGUX YUHHUKIE CROMCUBAHHSA, A MAKONIC POUWUPEHH eMNIpUYHOL 0a3u 015 OYIiHIOB8AHHS
epexmusHocmi Yupposux OGIIHUKIE Y KOHMEKCMI MOOEPHI308aHUX 6Y0iseNb PI3HO20 NPUSHAYEHHS.

KawuoBi cioBa: enepzoeghexmusnicms 6ydisenv, npocrosHi moodeni, mepmomooepHizayis, 2iuboke
HABYAHHA, YUPPOBI OBIIHUKY, CUCEMU YNPAGTIHHA eHEP2OCHONCUBAHHAM.
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