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ПІДВИЩЕННЯ ЕНЕРГОЕФЕКТИВНОСТІ ФАСАДНОЇ  

СОНЯЧНОЇ ЕЛЕКТРОСТАНЦІЇ ЗІ ЗАСТОСУВАННЯМ 

ШТУЧНОГО ІНТЕЛЕКТУ 
 

Статтю присвячено оптимізації сонячних фотоелектричних систем. Метою статті є аналіз 

останніх досліджень і сучасних підходів до покращення енергоефективності сонячних станцій. 

У статті розглянуто сучасні проблеми роботи сонячних електростанцій в умовах щільної міської 

забудови, які вимагають інтелектуальних та адаптивних стратегій управління для врахування 

динамічних експлуатаційних факторів. Представлено інформаційно-орієнтовану систему моделювання 

та оптимізації для фотоелектричної установки на фасаді готелю «River Park» з використанням PyPSA 

для моделювання системи та багатоагентного глибокого Q-навчання (DQN) для оптимізації управління. 

Досліджувана система має потужність 30,2 кВт (постійний струм) та інвертор 30 кВт (змінний 

струм) із річною генерацією 23,38 МВт·год. Коефіцієнт продуктивності (PR) становить 84,3% на 

основі метеорологічних даних Meteonorm. 

Для підвищення ефективності роботи було розгорнуто багатоагентну систему навчання з 

підкріпленням (MARL), яка включає три взаємодіючі агенти: агент очищення (для зменшення втрат 

через забруднення), агент кута нахилу (для максимізації сонячного опромінення) та агент інвертора 

(для оптимізації ефективності перетворення). Кожен агент навчався у середовищі PyPSA–OpenAI Gym 

з використанням спеціально розроблених функцій винагороди. 

Валідація MARL-системи проводилася шляхом порівняння оригінальної та оптимізованої версій. 

Результати показали зростання місячної віддачі в енергосистему майже для всіх місяців, стабільне 

покращення PR, а також суттєве збільшення річного виробітку енергії за умови використання навчання 

з підкріпленням. Отримані результати підтверджують потенціал модульної MARL-системи для 

оптимізації фасадних фотоелектричних систем у реальному часі в умовах міських енергетичних 

систем. 

Ключові слова: відновлювана енергетика, інтелектуальне управління, штучний інтелект, 

машинне навчання, енергетична ефективність, сонячні електростанції, фасадні генераційні системи, 

комп'ютерне моделювання, адаптивні технології, урбаністична енергетика 

 

Вступ 

Зростаючий попит на чисті енергетичні рішення висунув сонячні енергетичні системи в центр 

глобальних стратегій розвитку відновлюваної енергетики. Хоча фотоелектричні (PV) технології 

забезпечують значні екологічні переваги, їх широкомасштабне впровадження стикається з істотними 

викликами, пов’язаними з ефективністю, що стримує реалізацію їхнього повного потенціалу. Сонячні 

установки функціонують у постійно змінних природно-кліматичних умовах, де такі фактори, як 

періодична хмарність, сезонні коливання та деградація обладнання, створюють складні оптимізаційні 

задачі, з якими традиційні системи керування не завжди здатні впоратися ефективно. 

Звичайні підходи до управління ґрунтуються на статичних параметрах і реактивних стратегіях 

технічного обслуговування, що залишає нереалізованими значні резерви підвищення продуктивності. Ці 

обмеження особливо виявляються в умовах міського середовища, де інтегровані в будівлі сонячні масиви 

змушені враховувати унікальні мікрокліматичні умови, просторові обмеження та варіативність профілю 

енергоспоживання. Нездатність динамічно адаптуватися до багатовимірних викликів призводить до 

субоптимального виробництва енергії, зростання експлуатаційних витрат та скорочення терміну служби 

систем. 

Останні досягнення у сфері обчислювального інтелекту та аналітики даних відкривають нові 

можливості для трансформації підходів до управління сонячними енергетичними системами. Розробка 

більш інтелектуальних архітектур керування, здатних обробляти дані про довкілля в режимі реального 

часу, прогнозувати тенденції продуктивності та автономно коригувати параметри системи, дозволить 

досягти суттєвого підвищення ефективності. Водночас наявні наукові дослідження ще не запропонували 

комплексних рішень, що охоплювали б увесь спектр технічних і експлуатаційних завдань та водночас 

залишалися б придатними для практичної реалізації. 

Цей розрив у можливостях оптимізації становить критичний бар’єр на шляху досягнення повного 

потенціалу сонячної енергетики в глобальному переході до відновлюваних джерел, особливо в умовах 
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щільної міської забудови, де просторові обмеження та специфіка енергоспоживання створюють особливо 

складні умови експлуатації. Розвиток більш досконалих методологій керування може суттєво підвищити 

економічну доцільність і екологічну ефективність виробництва сонячної енергії у світовому масштабі. 

Огляд літератури 

Сонячні фотоелектричні (PV) системи є ключовим елементом сучасної глобальної енергетики, 

орієнтованої на розвиток сталих альтернатив. У зв’язку з їх широким розгортанням, забезпечення 

оптимальної продуктивності розглядається як одне з першочергових завдань наукових досліджень [1]. У 

цьому контексті під оптимізацією розуміють ефективне регулювання таких факторів, як виробіток енергії, 

коефіцієнт перетворення потужності, відмовостійкість та баланс між вартістю і ефективністю [2]. 

Класичні підходи до оптимізації PV‑систем включають використання евристичних алгоритмів, 

математичного програмування та інтелектуальних методів [3]. Ефективність їх реалізації підтверджена 

рядом досліджень, однак згадувані методи часто втрачають ефективність при коливаннях сонячної радіації 

та температури [4]. 

Сучасний етап розвитку обчислювальних методів відкрив нові перспективи через застосування 

навчання з підкріпленням (Reinforcement Learning, RL) у керуванні PV‑системами. RL‑алгоритми 

дозволяють агентам формувати політики на основі взаємодії із середовищем без необхідності явних 

моделей [5]. Було доведено, що RL‑методи можуть ефективно реагувати на атмосферні зміни [6], однак 

класичні Q‑learning‑архітектури мають обмежену здатність до узагальнення при масштабуванні [7]. 

Deep Q‑Network (DQN) — гібрид глибинного навчання та Q‑learning — ефективно вирішує 

проблему високорозмірних просторів станів [8]. DQN уже застосовано в задачах MPPT при частковому 

затіненні [9], у системах із «розумними» інверторами [10], у гібридних системах зберігання енергії [11], а 

також у розподілі потужності в мікромережах у реальному часі [12]. 

Втім, подальший розвиток оптимізаційних систем вимагає багатоагентного підходу (Multi‑Agent 

Reinforcement Learning, MARL). MARL‑архітектури дозволяють структурно та функціонально 

розподіляти інтелект серед компонентів PV‑систем [13], що покращує маштабованість і стійкість систем. 

Мета статті полягає в розробці та валідації нової багатoагентної системи глибокого навчання з  

підкріпленням для оптимізації фасадно-інтегрованих фотогальванічних систем у міському середовищі. 

Матеріал і результати досліджень 

У цьому дослідженні розглянуто ефективність та оптимізацію PV-системи (River Park, фасад) із 

використанням емпіричних технічних характеристик та інтеграції метеорологічних даних. Система 

включає модуль з номінальною потужністю на боці постійного струму (DC nameplate) 30,2 кВт та інвертор 

із номінальною потужністю на боці змінного струму (AC nameplate) 30,0 кВт. Співвідношення DC/AC 

становить 1,01, що забезпечує майже збалансовану конфігурацію, мінімізуючи втрати від втрати від 

обрізання інвертором і водночас підтримуючи ефективність інвертора. 

Річний виробіток системи становить 23,38 МВт·год при коефіцієнті продуктивності (performance 

ratio) 84,3%. Цей показник відображає ефективність перетворення сонячної радіації у корисний 

електричний вихід за заданих експлуатаційних умов. Для врахування кліматичної мінливості та 

специфічних умов інсоляції було використано метеорологічний набір Typical Meteorological Year (TMY) 

із просторовою роздільною здатністю 10 км, наданий Meteonorm 7. Це дозволило забезпечити точне 

моделювання доступності сонячного ресурсу та поведінки системи у часі. Крім того, як ключовий 

показник ефективності було використано питомий виробіток (specific yield), що становив 773,2 

кВт·год/кВтp. Поєднання високоточних метеоданих та документованих технічних параметрів забезпечує 

надійну методологію моделювання та аналізу роботи PV-системи. 

Аналіз втрат 

Для оцінки експлуатаційної ефективності PV-системи проведено детальний аналіз втрат на основі 

результатів моделювання та емпіричних даних. Продуктивність системи було розподілено за категоріями 

втрат з метою ідентифікації та кількісної оцінки неефективностей. Найбільший внесок у загальні втрати 

становила втрата від відбиття сонячного світла - 4,7%, далі втрати від невідповідності параметрів 

фотоелементів — 3,5% та температурні втрати — 3,1%. Ці фактори переважно виникають на рівні модулів 

і є ключовими для оцінки ефективності конструкції панелей та специфічних умов розташування. Втрати 

від забруднення та від рівня опромінення становили відповідно 2,0% і 1,7%, що відображає вплив 

навколишнього середовища та умов технічного обслуговування. Втрати інвертора під час перетворення 

DC–AC дорівнювали 1,6%. 

Незначні втрати зафіксовано в AC-системі та проводці (по 0,1% кожна), що свідчить про 

ефективність електротехнічного компонування та короткі траси передачі. Важливо відзначити, що втрати 

від обрізання інвертором та затінення становили 0%, що демонструє оптимальність проєктних рішень 

щодо розмірності інвертора та розташування панелей без затінення. 

Номінальні дані генерації енергії PV-системи були отримані в результаті проведеного процесу 

моделювання із застосуванням спеціалізованого програмного забезпечення HelioScope. 
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Як показано в Таблиці 1, щомісячний профіль виробітку енергії PV-системи демонструє виражену 

сезонну варіативність.Максимальний вихід зафіксовано у липні та серпні, що становив відповідно 2 541,4 

кВт·год та 2 545,4 кВт·год. Цей пік збігається з найвищими значеннями опромінення на площину масиву, 

що підтверджує сильну кореляцію між доступністю сонячного ресурсу та продуктивністю системи. 

 

Таблиця 1 – Значення генерація сонячної енергії помісячно для PV-системи (River Park, фасад). 

Місяць 

Загальна 

горизонтальна 

радіація 

(kWh/m²) 

Радіація на 

площину 

масиву 

(кВт·год/м²) 

Затінення 

(kWh/m²) 

Номінальна 

генерація 

(kWh) 

Генерація в 

мережу 

(kWh) 

Січень 23 42.3 42.3 1,225.10 1,153.60 

Лютий 32.9 48.3 48.3 1,393.20 1,306.60 

Березень 77.4 91.1 91.1 2,600.20 2,394.70 

Квітень 124.5 93.7 93.7 2,717.80 2,460.50 

Травень 156.1 96 96 2,676.40 2,405.70 

Червень 171.2 93.2 93.2 2,583.20 2,299.30 

Липень 172.6 101.4 101.4 2,853.20 2,541.40 

Серпень 139.7 100.3 100.3 2,886.60 2,545.40 

Вересень 94.3 91.4 91.4 2,634.60 2,328.40 

Жовтень 55.1 76.6 76.6 2,195.30 1,873.60 

Листопад 24.5 46.4 46.4 1,221.00 1,108.00 

Грудень 14.9 29.5 29.5 858.3 784.5 

 

Натомість найнижчі показники виробітку спостерігаються у зимові місяці, зокрема у грудні (784,5 

кВт·год) та січні (1 153,6 кВт·год), що відповідає зменшеним значенням загального горизонтального 

опромінення та значеннями опромінення на площину масиву, характерним для цього періоду. Незважаючи 

на цей сезонний спад, система зберігає стабільні річні показники ефективності: загальний річний вихід у 

мережу становить приблизно 23,38 МВт·год. 

Симуляційний фреймворк та налаштування моделі 

Сонячну PV-систему було змодельовано з використанням PyPSA, а оптимізацію виконано за 

допомогою багатoагентного DQN. PyPSA застосовано для моделювання енергосистеми, тоді як 

середовище OpenAI Gym використано для симуляції поведінки системи. Для оптимізації окремих 

компонентів застосовано DQN з кількома агентами, включаючи навантаження інвертора, частоту 

очищення та кут нахилу панелей. 

Система була декомпозована на три спеціалізовані агенти: 

•  Агент A (Cleaning Agent) — мінімізує втрати від забруднення (soiling loss), 

•  Агент B (Tilt Agent) — оптимізує кут нахилу панелей для максимізації захоплення інсоляції, 

•  Агент C (Inverter Agent) — налаштовує параметри інвертора для досягнення максимальної 

ефективності перетворення. 
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Кожен агент спостерігає релевантні стани середовища та отримує індивідуально сформовану 

винагороду (shaped reward). 

Деталізована архітектура моделі, яка представляє собою модульний фреймворк на основі навчання 

з підкріпленням для оптимізації продуктивності сонячних фотоелектричних (PV) систем, зображена на 

(рис. 1). Процес починається з використання зовнішніх джерел метеорологічних даних, зокрема наборів 

Typical Meteorological Year (TMY) від Meteonorm 7. Ці дані забезпечують критично важливі вхідні 

параметри, такі як інсоляція та температура. Отримані змінні довкілля надходять у симулятор PV-системи, 

змодельований у PyPSA (Python for Power System Analysis). Симулятор налаштований відповідно до 

характеристик системи: потужність на боці постійного струму (DC) — 30,2 кВт, потужність інвертора на 

боці змінного струму (AC) — 30,0 кВт, коефіцієнт продуктивності — 84,3%. Ця конфігурація формує 

базову основу для моделювання реалістичної поведінки PV-системи за різних умов довкілля. 

 
Рисунок 1 – Детальна блок-схема налаштування моделі 
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Вихідні дані симулятора інтегруються у середовище OpenAI Gym, яке виступає інтерфейсом для 

DQN-агентів, що взаємодіють із системою. Архітектура складається з трьох навчальних агентів, які 

отримують спостереження, зокрема інсоляцію, індекс забруднення, ефективність інвертора, 

метеорологічні дані та вихід PV-системи. Модуль обчислення винагороди формує індивідуальні ключові 

показники ефективності (KPI) для агентів на основі виграшів від очищення, оптимізації кута нахилу та 

ефективності перетворення. Цикл функціонує у режимі «навчання — дія — оцінювання», що дає змогу 

системі автономно підвищувати енергетичний вихід та експлуатаційну ефективність у часі. 

 

Відгук системи енергопотоку розраховується за рівнянням (1): 

 

                                                 𝑠𝑡 = [𝑃𝑡 , 𝐺𝑡 , Ø𝑡 , 𝐷𝑡 , 𝐶𝑡]                                                                 (1)  

 

де 𝐺𝑡 — стан інвертора, що відображає робочий режим силових перетворювачів; Ø𝑡— кут нахилу 

сонячних панелей; 𝐷𝑡 — стан очищення; 𝐶𝑡 — умови інсоляції. 

Еволюція середовища описується функцією переходу за рівнянням (2): 

 

                                                𝑠𝑡+1 = 𝑓(𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡]                                                                       (2) 

 

де 𝑎𝑡 — дія агента або контролера в момент часу t, наприклад регулювання кута нахилу чи запуск процесу 

очищення; 𝑤𝑡— стохастична зміна погодних умов. Така формалізація дає змогу моделі відображати 

динамічні характеристики енергетичних систем і дозволяє багатoагентному підходу reinforcement learning 

(RL) оптимізувати виробіток енергії в режимі реального часу. 

Кожен агент відповідає за контроль певного підкомпонента системи: 

•  Агент A— планування очищення; 

•  Агент B — оптимізація кута нахилу; 

•  Агент C — керування навантаженням інвертора. 

Кожен агент отримує локальне спостереження із глобального стану системи, обирає дію та одержує 

індивідуальну винагороду. 

Функція формування винагороди визначається рівнянням (3):     

 

                                                𝑅𝑡 =  𝑎1𝐸𝑡 - 𝑎2𝐶𝑡 - 𝑎3𝑀𝑡                                                                  (3) 

 

де 𝐸𝑡 — енергія, подана в мережу у момент часу t; 𝐶𝑡 — витрати на очищення; 𝑀𝑡 — штраф за технічне 

обслуговування; 𝑎1, 𝑎2, 𝑎3 — вагові коефіцієнти, що збалансовують енергетичну ефективність та 

експлуатаційні витрати. 

Спільна оптимізаційна функція формулюється рівнянням (4), де кожен агент навчається 

максимізувати сумарну винагороду: 

 

                                                𝑚𝑎𝑥

Ø𝑡
𝐸 ∑ ƴ𝑡𝑅𝑡

𝑇
𝑡=0                                                                             (4) 

 

де γ — коефіцієнт дисконтування. 

Результати та аналіз 

У цьому розділі представлено результати симуляційного моделювання, що демонструють 

ефективність запропонованого багатoагентного фреймворку для підвищення продуктивності сонячної PV-

установки «River Park, фасад». Поєднання моделювання системи на основі PyPSA з керуючими 

стратегіями, побудованими на reinforcement learning (RL), дало змогу оцінити вплив кооперативних агентів 

на ключові експлуатаційні показники. 

Порівняння місячної генерації енергії (у кВт·год) між двома підходами: стандартним методом та 

оптимізованим методом на основі RL подано на (рис. 2). Стовпчики із суцільною заливкою відображають 

вихід енергії в мережу за базовим сценарієм, тоді як суцільна лінія з маркерами демонструє результати 

RL-оптимізації. 

В обох випадках простежується виразна сезонна динаміка: максимальні показники виробітку 

спостерігаються у період з березня по вересень, тоді як мінімальні значення характерні для періоду пізньої 

осені та зими (листопад, грудень, січень, лютий). 

На графік накладено червону лінію з маркерами, яка відображає середній щомісячний виробіток 

енергії, досягнутий завдяки оптимізації на основі RL. Ця лінія стабільно розташована вище за вихідні 

стовпчики, що свідчить про вищий рівень виробітку енергії RL-оптимізованої системи в кожному місяці. 

Числові значення над лінією відображають приріст продуктивності, який коливається від 50 до 100 кВт·год 

щомісяця. Стандартне відхилення результатів RL за кількома симуляціями позначене заштрихованою 



 

ISSN 1813-5420 (Print).  Енергетика: економіка, технології, екологія. 2025. № 4 

ISSN 2308-7382 (Online)                                                                                                           
 
 

159 

областю, яка демонструє рівень невизначеності у продуктивності RL. Таким чином, RL-оптимізація не 

лише забезпечує стабільне підвищення виробітку енергії протягом року, але й гарантує керований рівень 

варіативності у критичні періоди енергоспоживання та генерації. 
 

Рисунок 2 – Порівняння значень щомісячної генерації електроенергії в мережу між номінальною 

системою та RL-оптимізованою. 
 
Щомісячний коефіцієнт продуктивності (Performance Ratio, PR) для двох підходів представлено на 

(рис. 3). 

PR є нормалізованим показником, що характеризує ефективність перетворення доступної енергії у 

корисний електричний вихід. Найвищі значення PR (0,72–0,75) зафіксовано у січні та лютому, що свідчить 

про оптимальну роботу системи в ці місяці. Починаючи з жовтня, спостерігається різке зниження 

коефіцієнту продуктивності, з особливо вираженим падінням у листопаді та мінімальними значеннями в 

грудні (нижче 0,3 для обох версій системи), що, ймовірно, зумовлено зменшенням сонячної інсоляції або 

більш жорсткими експлуатаційними умовами. 

У більшості місяців RL-оптимізований коефіцієнт продуктивності зберігає дещо вищі значення 

порівняно з оригінальним, що особливо помітно у квітні, травні, листопаді та грудні. Це підтверджує, що 

застосування reinforcement learning (RL) забезпечує більш ефективну роботу системи за умов змінної 

інсоляції. У період із березня по вересень обидві криві коефіцієнту продуктивності залишаються відносно 

стабільними (0,63–0,67) з мінімальними відмінностями, що свідчить про обмежені можливості для 

подальшої оптимізації в місяцях із вже високою ефективністю. 

Поступове накопичення виробітку енергії протягом року для двох підходів — оригінального та RL-

оптимізованого проілюстровано на (рис. 4). Обидва методи демонструють стабільно зростаючий тренд, 

що підтверджує безперервну генерацію енергії впродовж року. Водночас крива RL-оптимізованої системи 

постійно розташована вище за вихідну, що свідчить про вищу ефективність збору енергії. 

Різниця між підходами стає особливо помітною з середини року, зокрема після червня, що вказує 

на здатність RL-підходу ефективно навчатися та адаптуватися до змін довкілля чи динаміки роботи 

системи у часі. До грудня RL-оптимізована система досягає дещо більш ніж 25 000 кВт·год. Ця 

кумулятивна перевага доводить, що навіть відносно невеликі щомісячні прирости, досягнуті завдяки 

reinforcement learning (RL) у підсумку накопичуються та забезпечують відчутне підвищення річного 

виробітку енергії. 

Як показано на (рис. 5) - RL-оптимізована система забезпечує стабільно вищий рівень виробітку 

енергії, що підтверджується як вищим медіанним значенням, так і загальним зміщенням розподілу у бік 

більшої продуктивності. Діапазон варіацій у обох випадках залишається незначним, однак RL-

оптимізована система демонструє дещо більшу дисперсію у межах вищого рівня продуктивності. Це 

свідчить про те, що оптимізація на основі reinforcement learning (RL) підвищує загальний вихід енергії в 

мережу. 
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Рисунок 3 – Графік щомісячного коефіцієнта продуктивності (Performance Ratio) упродовж року. 
 

 
Рисунок 4 – Графік залежності накопиченої енергії від коефіцієнта продуктивності з урахуванням 

варіацій. 

 

Висновки 

Дослідження підтверджує ефективність використання reinforcement learning (RL) для оптимізації 

мережевих енергетичних систем. У порівнянні з базовою стратегією, модель на основі RL стабільно 

забезпечує вищий місячний виробіток енергії, особливо у періоди низької генерації. Отримані результати 

свідчать, що RL-агент успішно адаптується до сезонних та експлуатаційних варіацій, підтримуючи 

ефективність роботи системи за умов коливань зовнішніх факторів. 

Аналіз кумулятивного виробітку підтверджує довгострокові переваги RL-оптимізації. До кінця року 

RL-оптимізована система перевищує базову за сукупним енергетичним виходом. З технічної точки зору, 

результати дослідження підтверджують, що RL є масштабованим та адаптивним інструментом керування, 

який має значний потенціал для широкого впровадження у сфері інтеграції відновлюваних джерел енергії. 



 

ISSN 1813-5420 (Print).  Енергетика: економіка, технології, екологія. 2025. № 4 

ISSN 2308-7382 (Online)                                                                                                           
 
 

161 

 
Рисунок 5 – Генерація енергії номінальної та у запропонованій RL-оптимізованій моделі. 
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OPTIMIZING FACADE PHOTOVOLTAIC SYSTEMS  

USING REINFORCEMENT LEARNING 
 

Optimizing solar photovoltaic systems in complex urban environments requires intelligent and adaptive 

control strategies to account for the dynamic operational factors. This study presents a data-driven simulation 

and optimization framework for the “River Park, Facade” solar Photovoltaic installation using PyPSA for system 

modeling and multi- agent Deep Q-Learning (DQN) for control optimization. The system under study features a 

30. 2 kW DC-rated array and a 30 kW AC inverter, with a measured annual output of 23. 38 MWh. The 

performance ratio (PR) of 84.3% based on meteorological inputs from Meteonorm are used for the analysis. To 

enhance operational efficiency, we deployed a multi-agent reinforcement learning (MARL) framework that 

exploits three cooperative agents: a cleaning agent to mitigate soiling losses, a tilt agent to maximize irradiance 

capture, and an inverter agent to regulate conversion efficiency. Each agent was trained within a PyPSA– OpenAI 

Gym environment using shaped rewards aligned with specific loss categories. The MARL system was validated 

through comparative overlay plots of the original system versus the RL-optimized version. Results demonstrate an 

increased monthly grid output in nearly all months and a slight but consistent improvement in PR. Additionally, 

higher cumulative energy production throughout the year, and a notable gain in total annual energy yield was 

observed in case of RL-enhanced regime. These findings  confirm  the  potential  of  modular,  reward-shaped  

MARL  for  real-time optimization of facade-integrated solar Photovoltaics systems for smart building energy 

systems in urban settings.  

Keywords: reinforcement learning, photovoltaic system optimization, multi-agent systems, deep Q-

learning, solar energy, smart buildings, performance ratio, energy efficiency, real-time control, urban renewables. 
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