DIAGNOSTICS OF MAIN PIPELINES FOR THE MECHATRONIC COMPLEX

Authors

  • Stefan Volodymyrovych Zaichenko Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Ukraine https://orcid.org/0000-0002-8446-5408
  • Stepan Prokopovych Shevchuk Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Ukraine https://orcid.org/0000-0002-7517-0501
  • Oleksandr Valeriiovych Danilin Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Ukraine https://orcid.org/0000-0003-3207-1156
  • Vitalii Anatoliiovych Pobihailo Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Ukraine https://orcid.org/0000-0003-2673-7329
  • Nataliia Ivanivna Zhukova Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Ukraine https://orcid.org/0000-0002-4215-6981

DOI:

https://doi.org/10.20535/1813-5420.3.2018.163998

Keywords:

pipeline, position, coordinate system, Euler angles, trajectory length, mechatronic complex

Abstract

While receiving information under dangerous conditions, at which human presence is difficult or impossible, widely spread are the mobile robotic complexes. Particularly important information to determine the stressed-strained state of the underground workings is data on their geometry. Establishing the values of convergence of underground workings will make it possible to locate dangerous areas and decrease the number of emergency cases. In order to design an experimental sample, we developed basic approaches to create geomechatronic complexes, which define the main tasks, the scope of application, and quality criteria. The motion of the complex along an underground working is accompanied by a spatial change in the position of a distance sensor, which must be considered when establishing the actual values of the profile of a working. As parameters that take into account a change in the position, we proposed six components, three displacements and three Euler angles, which are registered by a microelectronic gyroscope that registers the distance traveled. The obtained analytical dependencies can be used in the study of the geometry of geotechnical structures.

References

Koshkarev, A., Burkov, V. (1998). Heoynformatyka. Tolkovanye osnovnikh termynov. M.: HYS-Assotsyatsyia, 213s.

Ysyy, Kh., Ynouэ, Kh., Symoiama Y. (1988). Mekhatronyka. M.: Myr, 318 s.

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous mobile robots. MIT press.

Bares, J. E., & Wettergreen, D. S. (1999). Dante II: Technical description, results, and lessons learned. The International Journal of Robotics Research, 18(7), 621-649.

Durrant-Whyte, H., Majumder, S., Thrun, S., De Battista, M., & Scheding, S. (2003). A bayesian algorithm for simultaneous localisation and map building. In Robotics Research (pp. 49-60). Springer Berlin Heidelberg.

Parcheta, C. E., Pavlov, C. A., Wiltsie, N., Carpenter, K. C., Nash, J., Parness, A., & Mitchell, K. L. (2016). A robotic approach to mapping post-eruptive volcanic fissure conduits. Journal of Volcanology and Geothermal Research, 320, 19-28.

Zaichenko, S., Shalenko, V., Shevchuk, N., & Vapnichna, V. (2017). Development of a geomechatronic complex for the geotechnical monitoring of the contour of a mine working. Eastern-European Journal of Enterprise Technologies, 3(9 (87)), 19-25.

Marushchak. P. O.. & Konovalenko. I. V. (2010). Izmereniye deformatsii materialov putem analiza tsifrovykh izobrazheniy poverkhnosti. Zavodskaya laboratoriya. Diagnostika materialov. 76(6). 55-61.

Mitrokhin. M. Yu.. Spirin. V. A.. & Aleksandrov. V. A. (2008). Vnutritrubnaya diagnostika trudnodostupnykh uchastkov lineynoy chasti MG. Gazovaya promyshlennost. (6). 72-74.

Egorov. I. N.. & Kadkhim. D. A. (2011). Primeneniye mobilnykh robotov pri vnutritrubnoy diagnostike truboprovodov s peremennym poperechnym secheniyem. Elektronnyy nauchnyy zhurnal «Neftegazovoye delo. (3). 73-85.

Golubkin. I. A.. & Shcherbatov. I. A. (2014). Sistema upravleniya mobilnym kolesnym robotom dlya vnutritrubnoy inspektsii gazoprovodov. Informatika i sistemy upravleniya. (4). 129-140.

Voronchikhin. S. Yu.. Samokrutov. A. A.. & Sedelev. Yu. A. (2016). Otsenka tekhnicheskogo sostoyaniya tekhnologicheskikh truboprovodov kompressornykh stantsiy PAO «Gazprom» s primeneniyem robotizirovannykh skanerov. Nauchno-tekhnicheskiy sbornik Vesti gazovoy nauki. (3). 120-130.

Liu, J., Zhong, L., Wickramasuriya, J., & Vasudevan, V. (2009). uWave: Accelerometer-based personalized gesture recognition and its applications. Pervasive and Mobile Computing, 5(6), 657-675.

Jang, I. J., & Park, W. B. (2003, October). Signal processing of the accelerometer for gesture awareness on handheld devices. In Robot and Human Interactive Communication, 2003. Proceedings. ROMAN 2003. The 12th IEEE International Workshop on (pp. 139-144). IEEE.

Kozlov, A., Sazonov, I., Vavilova, N., & Parusnikov, N. (2013). Calibration of an inertial measurement unit on a low-grade turntable with consideration of spatial offsets of accelerometer proof masses. Proc. ICINS, 126-129.

Issue

Section

MONITORING, DIAGNOSTICS AND MANAGEMENT BY ENERGY PROCESSES AND EQUIPMENT