APPLICATION OF R STUDIO TOOLS FOR ANALYSIS OF FACTORS AFFECTING ENERGY CONSUMPTION
DOI:
https://doi.org/10.20535/1813-5420.4.2019.207094Keywords:
R Studio, correlation analysis, software, power consumption, databases, information technologyAbstract
Reducing energy consumption is one of the priority areas of development for all energy consumers. The choice of an efficient and reliable programming language will provide a qualitative analysis of all possible impacts, and consequently a more rational energy consumption by consumers and improve the quality of energy management. The main purpose of this work is to determine the means of R Studio to identify the most influential factors in energy consumption. Information technology allows you to process large databases, as well as use mathematical tools to identify factors that affect the level of energy consumption. R Studio is an open source integrated shell and has a user-friendly interface that simplifies working with R. A number of features, such as backlighting and auto-completion, easy script navigation and others, make R Studio attractive for analyzing statistical databases with many variables. This article describes in detail the contents of the main R Studio window and its main functionality. On the example of the enterprise database the mathematical tools of R Studio were considered: the matrix of pair correlation coefficients for factor signs is constructed, the correlation analysis of influence of factors on energy consumption is carried out.References
G.M. Huebner, I. Hamilton, Z. Chalabi, D. Shipworth, T. Oreszczyn Explaining domestic energy consumption – the comparative contribution of building factors, socio-demographics, behaviours and attitudes Appl Energy, 159 (2015), pp. 589-600
R.V. Jones, K.J. Lomas Determinants of high electrical energy demand in UK homes: socio-economic and dwelling characteristics Energy Build, 101 (2015), pp. 24-34
N. Fumo and M. A. R. Biswas, "Regression analysis for prediction of residential energy consumption", Renew. Sustain. Energy Rev., vol. 47, pp. 332-343, 2015.
M. G. Sobamowo, "On the Extension of Sarrus ***** Rule to Matrices: Development of New Method for the Computation of the Determinant of Matrix", Int. J. Eng. Math., vol. 2016, 2016.
F. Kaytez, M. C. Taplamacioglu, E. Cam and F. Hardalac, "Electrical Power and Energy Systems Forecasting electricity consumption: A comparison of regression analysis neural networks and least squares support vector machines", Int. J. Electr. Power Energy Syst., vol. 67, pp. 431-438, 2015.
Bublitz, Andreas, Dogan Keles & Wolf Fichtner (2016). “An analysis of the decline of electricity spot prices in Europe: Who is to blame?” Energy Policy (submitted).
R: data analysis and visualization. Available from: http://r-analytics.blogspot.ru (accessed: 10.02.2020).
R-FAQ. Available from: https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-is-R_003f (accessed: 05.02.2020)
Buhovec A. G., Moskalev P. V., Bogatova V. P., Biryuchinskaya T. Y. Statisticheskii analiz dannyh v sisteme
R: uchebnoe posobie [Statistical data analysis using R: the textbook]. Voronezh, 2010, 124 p.
Grolemund G., Wickham H. R for data science. Available from: http://r4ds.had.co.nz (accessed: 02.02.2020).
Bunn A., Korpela M. R: A language and environment for statistical computing. 2013.
Wagner H. M. Linear programming techniques for regression analysis //Journal of the American Statistical Association. 1959. Т. 54. №. 285. С. 206-212.
Browne, M. W., & Shapiro, A. (1986). The asymptotic covariance matrix of sample correlation coefficients under general conditions. Linear Algebra and Its Applications, 82, 169 –176. http://dx.doi.org/10.1016/ 0024-3795(86)90150-3
Cudeck, R., & O’Dell, L. L. (1994). Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475– 487. http://dx .doi.org/10.1037//0033-2909.115.3.475
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).