FEATURES OF LIQUID GAS SPRAYING PROCESS SIMULATION FOR INTERNAL COMBUSTION ENGINE

Authors

DOI:

https://doi.org/10.20535/1813-5420.2.2020.220714

Keywords:

depth of jet penetration, spray, atomization, liquefied gas, numerical model

Abstract

The paper presents the results of numerical modeling of the spraying process a propane-butane liquefied mixture. The aim of the work is to develop a numerical model of the thermohydrodynamic process of liquefied gas spraying and to determine the thermophysical and geometric parameters of the spray torch in order to improve the existing fuel supply scheme of the internal combustion engine (ICE). The main theoretical aspects of the liquefied gas spraying process and the main thermophysical parameters required for numerical calculations of the studied phenomenon are presented in the paper. A numerical simulation method based on the Reynolds-averaged Navier- Stokes equation is used, and the model is tuned using the finite volume method. Numerical experiments were performed by injecting a liquefied propane-butane mixture into the air stream for a period of time sufficient for combustion in the internal combustion engine cylinder. The dependence of the depth of penetration of the fuel stream into the flow of oxidizing oxide, depending on the gas supply pressure, is established. Profiles of velocities, temperatures and concentrations of the injected mixture and gas phase are obtained. Theoretical estimation of the average droplet size of the sprayed liquid is carried out.

References

1. L.S. Christensen and S.L. Steely, Monodisperse atomizers for agricultural aviation applications, NACA CR- 159777, February 1980.

2. Nasser Ashgriz. Handbook of Atomization and Sprays: Theory and Applications. Springer ScienceþBusiness Media, LLC 2011.

3. M. Gorokhovski, M. Herrmann, Modeling primary atomization, Annu. Rev. Fluid Mech. 40 398 (2008) 343– 366.

4.K. Luo, H. Pitsch, M.G. Pai, and O. Desjardins, Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proceedings of the Combustion Institute, 33(2), pp. 2143–2152, 2011. doi:10.1016/j.proci.2010.06.077.

5.Li, Y., Gu, W., Wang, D., & He, J. Direct numerical simulation of polydisperse aerosol particles deposition in low Reynolds number turbulent flow. Annals of Nuclear Energy, 121, 223–231. doi:10.1016/j.anucene.2018.07.034

6.L. Fréret, O. Thomine, Direct Numerical Simulation of polydisperse evaporating sprays in 3 D jet configuration using Euler-Euler and Euler-Lagrange formalisms, vol.3, 2012.

7. I. Kolaitis Dionysios and A. Maria, Founti Numerical Simulation of Diesel Spray Evaporation in a “StabilizedCool Flame” Reactor: A Comparative Study, Flow, Turbulence and Combustion,vol.82,p.599–619. 2009. doi:10.1007/s10494-008-9171-1.

8. Simón Martínez-Martínez, Fausto Sanchez, Vicente Bermudez and J. Manuel Riesco-Avila, Liquid Sprays Characteristics in Diesel Engines, Fuel Injection, Daniela Siano, IntechOpen, August 17th 2010. DOI: 10.5772/9724.

9.V. Semião, P. Andrade and M. da G. Carvalho, Spray characterization: Numerical prediction of Sauter mean diameter and droplet size distribution. Fuel, 75(15), 1707–1714. 1996. doi:10.1016/s0016-2361(96)00163-9.

10. H.D. Dahl and E. Muschelknautz, Measurement of the droplet size distribution of a full cone nozzle, Chem.Eng. Tech. 15:221-231, 1992.

11. H. A. Troesch, Zerstäubung von Flüssigkeiten, Dissertation, Fortschrittsberichte VDI, Reihe 3, Nr. 607, 1999.

12. H. W. Glaser, Brennst. Wärme Kraft 38, 5:193-200, 1986.

T. Gemci, K. Yakut, N. Chigier and T.C. Ho, Experimental study of flash atomization of binary hydrocarbon liquids. International Journal of Multiphase Flow, 30(4), 395–417. 2004. doi:10.1016/j.ijmultiphaseflow.2003.12.003

14. O.Siryi, A. Solomakha, D. Pakosh Investigation of the process of spraying a liquefied propane-butane mixture for internal combustion engines. Ecological sciences: scientific and practical journal, Vol. 2(29), pp. 48-53, 2020.

15. P. Piątkowski and T. Bohdal., Testing of Ecological Properties of Spark Ignition Engine Fed with LPG Mixture. Rocznik Ochrona Środowiska, Vol. 13, pp.607-618, 2011.

Downloads

Published

2020-12-23

Issue

Section

MONITORING, DIAGNOSTICS AND MANAGEMENT OF ENERGY PROCESSES AND EQUIPMENT