ANALYSIS OF THE INFLUENCE OF ENERGY EFFICIENT HEATING MODES ON BUILDINGS ENERGY USE BASING ON THE MATHEMATICAL MODELING

Authors

DOI:

https://doi.org/10.20535/1813-5420.4.2020.233593

Keywords:

mathematical modeling, buildings, intermittent heating modes, energy savin

Abstract

Global trends of increasing the buildings energy efficiency are aimed at reducing energy use to nearly zero consumption (nZEB). Achieving the nZEB level requires the implementation of a set energy-saving measures to improve the thermophysical properties of fences, building engineering systems and the use of renewable energy sources. One of low-cost and energy-efficient measures to increase the level of energy efficiency of buildings is the introduction of energy-efficient intermittent heating modes of buildings. Usually, this measure is appropriate and possible after the thermal modernization of the building. Determining the energy performance of buildings for the introduction of intermittent heating modes requires the use of mathematical models. The paper compares the application of different mathematical models and methods for estimating thermal energy savings in thermal modernization and implementation of intermittent heating modes based on the quasi-stationary model according to DSTU B A.2.2-12: 2015, stadium model created on the basis of RETScreen software and dynamic model 5R1C according to EN ISO 13790 and EN 13786. Heat-accumulation properties of building enclosures in RETScreen are not taken into account, in DSTU B A.2.2-12: 2015 - are taken into account for external enclosures, 5R1C - both internal and external enclosures are taken into account. The calculation was made for a residential building and a gymnasium located in the city of Kyiv. The introduction of a set of measures for thermal modernization of building fences will reduce heat consumption by 60 and 35% for residential building reinforced and gymnasiums, respectively. Introduction of intermittent heating modes for buildings after thermal modernization / modern buildings allows to save on heating more than 15% - determined on the basis of RETScreen program, 10% - on the basis of dynamic grid model 5R1C, 22% - on the basis of quasi-stationary method according to DSTU B A.2.2- 12: 2015, for a residential building and a gymnasium building located in Kyiv.

References

Directive of the European Parliament and of the Council of 19 May 2010 - Energy Performance of EN L 153/13, 19.05.2010, p. 23.

Nematchoua M.K, Marie-Reine Nishimwe A., Reiter S. Towards nearly zero-energy residential neighbourhoods in the European Union: A case study. Renewable and Sustainable Energy Reviews 135 (2021) 110198. DOI: 10.1016/j.rser.2020.110198

Fedorczak-Cisak M., Knap K., Kowalska-Koczwara A., Pachla F., Pekarchuk O. Energy and Cost Analysis of Adapting an Existing Building to 2017 Technical Requirements and Requirements for NZEB. IOP Conference Series: Materials Science and EngineeringVolume 471, Issue 11, 24 February 2019. DOI: 10.1088/1757-899X/471/11/112094

DBN V.2.6-31:2006. Konstruktsii budynkiv ta sporud. Teplova izoliatsia budivel. [Na zaminu SNiP ІІ-3-79 ; chunnyi vid 2007.04.01 zi Zminou No1 vid 1 lypnia 2013 roku]. K.: Minbud Ukrainy, 2006. 70 s.

DBN V.2.6-31:2016. Konstruktsii budynkiv ta sporud. Teplova izoliatsia budivel. [chunnyi vid 08.10.2016]. K.: «Ukrarhbudinform», 2006. 70 s.

Deshko V., Bilous I., Buiak N. Vplyv pereryvchastykh rezhymiv opalennia na dynamiku enerhopotreby ta umovy komfortnosti budivel z riznym rivnem teplovoho zakhystu. [Influence of intermittent heating modes on the dynamics of energy consumption and comfort conditions of buildings with different levels of thermal protection] Naukovi visti NTUU KPI. 2019. No4. S. 7-16.

Enerhetychna efectyvnist budivel. Metod rozrahunku enerhospozhyvannia pry opalenni, okholodzhenni, ventyliatsii, osvitlenni ta hariachomu vodopostachanni / DSTU B A.2.2-12:2015 [Natsionalnyi standart Ukrainy] – K.: Minrehion Ukrainy, 2015, - 203 s.

Deshko V.I., Bilous I.Yu., Sukhodub I.O. MATHEMATICAL MODELS FOR DETERMINATION OF SPECIFIC ENERGY NEED FOR HEATING USED IN UKRAINE. Journal of New Technologies in Environmental Science (JNTES). 2018. No.1. Pp. 13-25.

DSTU B EN ISO 13790:2011. Enerhoefektyvnist budivel. Rozrakhunok enerhospozhyvannia pry opalenni ta okholodzhenni (EN ISO 13790:2008, IDT). [Na zaminu HOST 26629.85; chynnyi z 01.01.2013]. K. : NDIBK, 2011. 229 s.

EN ISO 13786:2007. Thermal performance of building component - Dynamic thermal characteristics - Calculation methods. — CEN. European Committee for Standardization, 2007. 27 р.

Bilous, I.Yu., Deshko, V.I., Sukhodub, I.O. Building energy modeling using hourly infiltration rate. Magazine of Civil Engineering. 2020. 96(4). Pp. 27–41.

RETScreen - Clean Energy Management Software [Електронний ресурс] – Режим доступу до ресурсу:

https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465

International Weather for Energy Calculations: https://energyplus.net/weather- location/europe_wmo_region_6/UKR.

DSTU -N B V.1.1-27:2010. Budivelna klimatolohia. K., 2011. 127 s.

Deshko V.I., Bilous I.Iu., Hetmanchuk H.O. Bazy klimatolohii dlia vyznachennia enerhetychnykh kharakterystyk budivel. [Climatology bases for determining the energy performance of buildings] Naukovyi zhurnal «Enerhetyka: ekonomika, tekhnolohii, ekolohiia». Vypusk No4 Kyiv 2017. S 67-73.

Published

2020-04-27

Issue

Section

ENERGY EFFICIENCY AND ENERGY SAVINGS