ANALYSIS OF FACTORS FOR FORECASTING ELECTRIC POWER GENERATION BY SOLAR POWER PLANTS
DOI:
https://doi.org/10.20535/1813-5420.4.2020.233597Keywords:
forecasting, electricity generation, solar power plant, correlation matrix, intensity of solar radiationAbstract
The new model of the wholesale electricity market in Ukraine causes appearance the market for the day ahead. In this market, the generating company undertakes to supply a certain amount of electricity. So, it is necessary to carry on the most accurate forecast of possible electricity generation by solar power plant (SPP). Generation value depends on certain factors. A brief summary of different influence of parameters on the PV cell performance has been provided. The article analyzes and identifies the factors that should be included in the forecast mathematical model of electricity generation by a solar power plant for a certain short-term period. According to analyzed data from SPP located in the Kyiv region, such parameters are the intensity of solar radiation, temperature and humidity, wind speed, and atmospheric pressure. The degree of influence of these factors on the initial function of electric energy generation were estimated by analyzing the scatter plot diagrams of relationship between parameters and correlation coefficients. Thus, the analysis of the influence of factors on the magnitude of electricity generation allowed to determine the priority of including each of the parameters in the mathematical model of the SPP power forecast. It was established that the influence of certain climate parameters for target function is different in each season. Therefore, in the mathematical model for forecasting electric power generation, it is necessary to take into account seasonality. In addition, the dynamic value change of factors also affects the current magnitude of electricity generation. Moreover, at different times of the year and with different combination of the corresponding values of climatic parameters, this effect may have different magnitudes. Therefore, the data obtained from the last periods before the forecasting should have a greater impact on obtaining the predicted value than the data from previous periods.
References
On the electricity market: Law of Ukraine No 2019-VIII of 13.04.2017 URL: http://zakon3.rada.gov.ua/laws/show/2019-19 (Accessed 21.07.2017). (Ukr)
Butenko V., Baidala V., Kozyrska T. Factors of solar electric power development in Ukraine. Investments: practice and experience. 2019. No17. Pp. 5-11. (Ukr)
Parsokhonov, Abdulkobi. Renewable Energy Source from Natural Thermal Expansion and Contraction of Matters. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS). 2016. Pp. 121-130.
Efficiency of solar panels URL: https://axiomplus.com.ua/news/effektivnost-solnechnyh-panelej/#klimat. (Accessed 19.03.2021). (Rus)
Secrets of the best conditions for maximum efficiency of solar panels in systems under the "Green Tariff" URL: https://solarsystem.com.ua/zvit-pro-robotu-sonyachnyh-elektrostantsij-pid-zelenyj-taryf-za-traven-2018-roku (Accessed 19.03.2021). (Ukr)
Panjwani, Manoj Kumar, and G. Bukshsh Narejo. Effect of humidity on the efficiency of solar cell (photovoltaic). International Journal of Engineering Research and General Science. 2014. Vol 2.4. Pp. 499-503.
Park, N. C., W. W. Oh, and D. H. Kim. Effect of temperature and humidity on the degradation rate of multicrystalline silicon photovoltaic module. International Journal of Photoenergy. 2013. Vol. 2. Pp. 107-117.
Erdem, C. U. C. E., Pinar Mert CUCE, and B. A. L. İ. Tulin. Impact of humidity on current parame-ters of solar cells. Journal of Energy Systems. 2018. Vol. 2.3. Pp. 84-96.
Mekhilef, Saad, Rahman Saidur, and Masoud Kamalisarvestani. Effect of dust, humidity and air ve-locity on efficiency of photovoltaic cells. Renewable and sustainable energy reviews. 2012. Pp 2920-2925.
Singhania, Shalabh, et al. Temperature and seeding effects on the precipitation of scorodite from sulfate solutions under atmospheric-pressure conditions. Metallurgical and materials Transactions. 2005. Pp. 327-333.
Taylor, Richard. Interpretation of the correlation coefficient: a basic review. Journal of diagnos-tic medical sonography. 1990. Pp. 35-39.
Pan, Cheng, et al. Very short-term solar generation forecasting based on LSTM with temporal attention mechanism. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). IEEE, 2019.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).