MODERN TECHNOLOGIES OF HYDROGEN GENERATION AND ACCUMULATION. ANALYTIC OVERVIEW OF THEORETICAL AND PRACTICAL EXPERIENCE

Authors

DOI:

https://doi.org/10.20535/1813-5420.1.2022.259125

Keywords:

hydrogen, motor fuel, hydrogen energy, hydrogen potential, fuel cell, hydrogen production, hydrogen storage methods, hydrogen engine.

Abstract

The article discusses the competitiveness of alternative fuels and technologies in the rapidly growing segment of passenger vehicles and aviation, which globally consumes more than 70% of the fuel spent on passenger transportation and about 45% in total on transport. The emergence of new technologies in personal vehicles (electric vehicles, hydrogen cars with fuel cell, biofuels, natural gas, etc.) makes us look at the prospects for the development of this segment in a new way. On the basis of this approach, an assessment of the methods of hydrogen production was carried out. Hydrogen production by steam conversion of methane, water electrolysis and biochemical production methods were compared in this article.

             Hydrogen is not a source of energy, but it is a mean  of converting other energy sources into chemical energy in the form of accumulative pure hydrogen, which can be used subsequently during its oxigenation. In fact, a tank or other hydrogen storage device is technically similar to a battery or gas tank, and therefore it is necessary to compare not only the efficiency, but also other parameters. Hydrogen needs to be produced and converted to produce final energy, and both require energy.

             The advantages of hydrogen as a universal energy carrier are determined by environmental purity, flexibility and efficiency of energy conversion processes with its participation. Technologies of large-scale hydrogen production are quite well mastered and have an almost unlimited raw material base.

             The importance of hydrogen production technologies is determined by the high calority of hydrogen combustion and the possibility of reducing greenhouse gas emissions, since ordinary water is the combustion product.

             The article provides a comparative analysis of methods of hydrogen storage in liquid and gaseous states, carbon structures and hydride of metals

References

R. V. Radchenko, A. S. Mokrushy`n, V. V. Tyul`pa. Vodorod v эnergety`ke : ucheb.posoby`e / R. V. Radchenko, A.S. Mokrushy`n,V. V. Tyul`pa. —Ekatery`nburg : Y`zd-vo Ural.un-ta, 2014.-C.20.

Stepanov A.V., Kuxar` V.P. Dosty`zheny`ya эnergety`ky` y` zashhy`ta okruzhayushhej sredy. — Ky`ev: Nauk.dumka, 2004. — 206 s.

Gol`czov V. Vodneva cy`vilizaciya majbutn`ogo / V. Gol`czov // Naukovy`j svit. - 2008. - # 4. - S. 2-5.

Derzsky`j V. G. Y`slandsky`j proekt / V.G. Derzsky`j // Эnergety`ka y` эlektry`fy`kacy`ya. - 2002. - # 10. - S. 45-46.

N. Grinvud, A. Ernsho. Ximiya elementiv: u 2-ox tomax. – BINOM. Laboratoriya znan`, 2008. – T.1. – S.11. — ISBN 978-5-94774-373-9.

Kovtun G. Perspekty`vy` vodnevoyi energety`ky` / G. Kovtun, Ye. Polunkin /Visny`k Nacional`noyi Akademiyi Nauk Ukrayiny`. - 2007. - # 4. - S. 12-18.

Fy`zy`cheskaya эncy`klopedy`ya. V 5 t. / glavn. red. A. M. Proxorov. M. : Sovetskaya эncy`klopedy`ya. Glavnыj redaktor A. M. Proxorov. 1988.-C. 16.

Analiz efekty`vnosti vy`kory`stannya energety`chny`x resursiv. V.S. Kudlaj, L.S.Seliverstov, 2012. - C. 4-5.

Atzhanov R. Razvorot na vodorod / R. Atzhanov // Vokrug sveta. - 2006. - # 7.-S. 104-111.

Arcy`movy`ch L. A. Upravlyaemыe termoyaderne reakcy`y` / L. A. Arcy`movy`ch. 2 y`zd., M., 1963. – C. 67.

Efremov Y. V. Na puty k termoyadernomu reaktoru / Y. V. Efremov. M. :, 1993. – C. 81.

Mordkov V.Z. Matery`aly Mezhdunarodnogo foruma po vodorodnym texnology`yam dlya proizvodstva energy`y` (6—10 fevralya 2006 g.). — M.:RUSDEM Energoeffekt, 2006. — 122 s.

Elektrolyz, yly voda vmesto benzyna. [Эlektronnyj resurs]. Rezhym dostupa: http://www.skyzone.ru/tech/meyer_h2.htm.

Kovtun G. Paly`vny`j element - osnova vodnevoyi energety`ky` / G. Kovtun //Visny`k Nacional`noyi Akademiyi Nauk Ukrayiny. - 2006. - # 3. - S. 78-83

Vodorod. Svojstva, polucheny`e, xraneny`e, transporty`rovany`e, pry`meneny`e: spravochny`k. M. : Xy`my`ya, 1989. – C. 112.

Vodneva ekonomika ta paly`vni komirky`. //Gromads`ka Rada Ukrayiny`, - 2005.

Varshavsky`j Y`.L., My`shhenko A.Y`. Analyz raboty porshnevogo dvygatelya na vodorode. Yzvesty`ya vuzov # 10. – M.: Mashynostroeny`e, 1977. – s.110-114.

Crabtree, G.W.; Dresselhaus, M.S.; Buchanan, M.V. The Hydrogen Economy. Phys. Today 2004, 57, 39–45

Sap, K.A.; Demmers, J.A.A.; Nimit Patel, G.R.The energy efficiency of onboard hydrogen storage. Intechб 2012, 6, 111–133.

J.E. Allen, Global energy issues affecting aeronautics: a reasoned conjecture, Progress in Aerospace Sciences 35 (5) (1999) 413–453.]

EIA, Official Energy Statistics from the US Government, Energy Information Administration, 2009 (accessed January 20, 2009) http://www.eia.doe.gov,

WAEG, World Energy Consumption and Production Trends, 2005, World Almanac Education Group, New York, 2008.]

M.M. Abu-Khader, Recent advances in nuclear power: a review, Progress in Nuclear Energy 51 (2) (2009) 225–235.].

K. Gregory, H.-H. Rogner, Energy resources and conversion technologies for the 21st century, Mitigation and Adaptation Strategies for Global Change 3 (2) (1998) 171–230.].

Hydrogen powered aviation report 2020, Clean Sky 2 JU & FCH 2 JU, p.20

IATA Publications, 2018

Balancing growth in connectivity with a comprehensive global air transport response to the climate emergency, ATAG Waypoint 2050 Report

A Study on Electrofuels in Aviation, Andreas Goldmann/Energies, MDPI

Aircraft Technology Roadmap to 2050, IATA

E- E-fuels: towards a more sustainable future for truck transport, shipping and aviation, VoltaChem whitepaper, 2020

Published

2022-06-22

Issue

Section

МІЖГАЛУЗЕВІ ПРОБЛЕМИ І СИСТЕМНІ ДОСЛІДЖЕННЯ В ПАЛИВНО-ЕНЕРГЕТИЧНОМУ СЕКТОРІ