TECHNOLOGICAL ENERGY CAPACITY OF COMBINED CYCLES OF STEAM GAS STATIONS

Authors

DOI:

https://doi.org/10.20535/1813-5420.3.2022.272083

Keywords:

energy consumption, combined cycle, steam and gas installations.

Abstract

Offers a means of increasing the efficiency of the cycle by reducing par asitic loads such as the excess air compressor load and of capturing  energy that might otherwise be wasted. However, this is not always the most effective way of increasing overall efficiency of energy conver sion. For large gas turbine based plants in particular, the best way of improving efficiency is to add a steam turbine bottoming cycle, creat ing a combined cycle power plan. A combined cycle plant is simply what its name suggests. Instead of relying on a single thermodynamic cycle to convert energy into electricity the plant uses more than one. These piggy-back one another  with the first cycle using the highest temperature  thermodynamic working fluid, followed by a second using the intermediate temperature fluid . In fact combined cycle plants with more than two cycles are not used commercially although they are theoretically possible. Much more significant for the modern power generation industry is the addition of a bottoming cycle to a gas turbine power plant. In this case the bottoming cycle is usually a steam turbine cycle, with heat from the gas turbine exhaust exploited to raise steam. This is the most common combined cycle power plant. It would be possible to add a third cycle to exploit the low grade heat remaining after steam generation. This could be achieved with a closed cycle turbine such as an organic Rankine cycle. Such turbines can exploit low grade heat to produce electricity and are used in some geothermal plants where the temperature of the geothermal reservoir is relatively low. However, it is unlikely to be economically viable to add this third cycle to a modern combined cycle plant. To determine the technological energy intensity of such stations, the whole cycle of energy production was considered. The main characteristics of combined cycles are given and the technological energy intensity of energy supply is calculated. The main advantages and disadvantages of these installations are given, and also the comparison of steam turbine and steam and gas stations is made with definition of possible potential at replacement.

References

Boyce M.P., Combined Cycle Systems for Near-Zero Emission Power Generation. Combined cycle power plants, Woodhead Publishing Series in Energy. 2012. Р. 1‒43.

Paul Breeze, Chapter 7 - Combined Cycle Power Plants. Gas-Turbine Power Generation. Academic Press. 2016. Р. 65‒75.

URL:http://energetika.in.ua/ua/books/book-3/part-1/section-3/3-8 Stvorennia ta rozvytok parohazovykh y hazoparovykh ustanovok, yikh klasyfikatsiia.( date of application 10.02.2022)

Malakhov Yu.V., O stratehyy y osnovnykh napravlenyiakh razvytyia эlektroэnerhetyky Ukraynы vpervoi polovyne XXI veka. Эnerhetyka y эlektryfykatsyia. 2001. №7. S. 8‒14.

Klymenko V.M., Rekonstruktsyia KS s maloэffektyvnыmy HTU-pryvodamy v эkonomycheskye kompressorno-эlektrycheskye stantsyy. Prom. Teplotekhnyka. 2002. №6. S. 6‒13.

Horskyi V.V., Povna enerhoiemnist vyrobnytstva teplovoi i elektrychnoi enerhii na vuhilnykh TETs. Zbirka naukovykh prats XVII Mizhnarodnoi naukovo-praktychnoi konferentsii "Vuhilna teploenerhetyka: shliakhy rekonstruktsii ta rozvytku". Instytut teploenerhetychnykh tekhnolohii NAN Ukrainy. Kyiv. 2021.

Dubovskyi S.V., Enerhoekonomichnyi analiz spoluchenykh system heneratsii elektrychnoi enerhii i teploty. Kyiv:. Naukova dumka. 2014. S. 103‒124.

Voloshchuk V.A., Ochkov V.F., Orlov K.A., Termodynamichna optymizatsiia prostoho binarnoho tsyklu PHU z kotlom-utylizatorom za dopomohoiu suchasnykh informatsiinykh tekhnolohii. Visnyk Natsionalnoho tekhnichnoho universytetu. Kharkivskyi politekhnichnyi universytet. 2010. №2. S. 102‒106.

Maliarenko E.E., Maistrenko N.Iu., Pokazately эnerhetycheskoi эffektyvnosty y opredelenye potentsyala эnerhosberezhenyia v promыshlennыkh tekhnolohyiakh. Эnerhotekhnolohyy y resursosberezhenye. 2015. №3. S. 18—28.

Maliarenko O., Horskyi V., Stanytsina V., Bogoslavska O., Kuts H. An improved approach to evaluation of the efficiency of energy saving measures based on the indicator of products total energy intensity. Systems, Decision and Control in Energy I. Editors: Babak V., Isaienko V., Zaporozhets A. 2020. ISBN 978-3-030-48583-2. S. 201-216. Режим доступу: https://www.springer.com/gp/book/9783030485825 та https://www.scopus.com/record/ display.uri?eid=2-s2.0-85088398850&origin=AuthorNamesList&txGid=

Stanytsina V.V., Enerhoiemnist zakhodiv z okhorony navkolyshnoho seredovyshcha yak skladova povnoi enerhoiemnosti produktsii. Problemy zahalnoi enerhetyky. 2011. Vyp. 4(27). S. 47—52.

Panchenko H.H., Povna enerhoiemnist osnovnykh vyrobnychykh fondiv. Aktualni pytannia rozvytku suchasnoi ekonomiky, upravlinnia ta administruvannia: Materialy mizhnarodnoi naukovo-praktychnoi konferentsii, m. Kyiv, 28 hrudnia 2019. Kyiv: Tavriiskyi natsionalnyi universytet imeni V.I. Vernadskoho. Ch.1. S. 101—104.

Panchenko H.H. Povna enerhoiemnist trudovytrat. Aktualni pytannia rozvytku suchasnoi ekonomiky, upravlinnia ta administruvannia: Materialy mizhnarodnoi naukovo-praktychnoi konferentsii, m. Kyiv, 28 hrudnia 2019 r. Kyiv: Tavriiskyi natsionalnyi universytet imeni V.I. Vernadskoho. Ch. 2. S. 43—46.

Published

2023-03-09

Issue

Section

TECHNOLOGIES AND EQUIPMENT IN ENERGY