PARAMETRIC ANALYSIS OF NATURAL AIR EXCHANGE IN MULTI-APARTMENT RESIDENTIAL BUILDINGS

Authors

DOI:

https://doi.org/10.20535/1813-5420.4.2023.290897

Keywords:

air exchange, natural ventilation, carbon dioxide concentration, mass transfer, parametric analysis, microclimate conditions

Abstract

Most multi-apartment residential buildings built in the 20th century in Central and Eastern Europe do not meet modern energy efficiency requirements. The main part of the thermal energy consumed by buildings is used to heat the supply air from outside, which is the largest share in the energy balance of buildings. The purpose of this research is a parametric analysis of influencing factors on the frequency of air exchange in the room and an experimental study of the concentration of CO2 in a typical apartment. The object of the study is a one-room apartment in a family-type dormitory in the city of Kyiv. The dormitory has ducted natural ventilation. In the work, experimental measurements of the concentration of carbon dioxide were carried out in the premises of the living room, kitchen, corridor of the apartment and in the ventilation channel in the summer period. The indicator gas method was used to measure the air exchange rate. During air infiltration, the average rate of air exchange in the absence of people in the apartment in the living room was 2.41 h-1, in the corridor - 2.34 h-1, in the
kitchen - 0.57 h-1. Under exfiltration conditions, the average values were lower: living room – 0.24 h-1, corridor – 0.94 h-1, kitchen – 0.52 h-1. The dependence between wind directions and the phenomena of infiltration and exfiltration in the premises of the apartment was recorded. As a result of the research, it was established that the most influential parameter of the change in the concentration of CO2 in the room is the release from people's breath. It follows from the simulation results that to ensure the regulatory level of CO2 concentration is not higher 1500 ppm, it is necessary to observe the air exchange in the considered room not lower than the level of 1.51 h-1
for conditions when 2 people are constantly in the room That is, the mass balance of CO2, which takes into account the number of inhabitants, can be an attractive alternative method for predicting the intensity of ventilation of a building.

References

Аналіз впливу розподілення повітрообміну між кімнатами на енергоспоживання квартири / В. І. Дешко та ін. Енергетика: економіка, технології, екологія. 2021. № 1. С. 39–50.

Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia / V. Földváry et al. Building and environment. 2017. No. 122. P. 363–372.

Indoor environmental quality of classrooms and occupants' comfort in a special education school in Slovak Republic / S. Vilcekova et al. Building and environment. No. 120. P. 29–40.

ANSI/ASHRAE/IES Standard 90.1-2010. Energy standard for buildings except low-rise residential buildings. Replaces AIJSI/ASHRAE/IESNA Standard 90. 1-2007. Official edition. ASHRAE, 2012.

ANSI/ASHRAE Standard 62.2-2022. Ventilation and acceptable indoor air quality in residential buildings. Replaces ANSI/ASHRAE Standard 62.2-2019. Official edition. Atlanta, Georgia : ASHRAE, 2022.

Bilous I., Deshko V., Sukhodub I. Building energy modeling using hourly infiltration rate. Magazine of civil engineering. 2020. Vol. 96(4). P. 27–41. URL: https://www.academia.edu/76773042/Building_energy_modeling_using_hourly_infiltration_rate (date of access: 27.09.2023).

Air infiltration rates in the bedrooms of 202 residences and estimated parametric infiltration rate distribution in Guangzhou / A. Sfakianaki et al. Building and Environment. 2008. Vol. 43, no. 4. P. 398–405. URL: https://doi.org/10.1016/j.buildenv.2007.01.006 (date of access: 27.09.2023).

Shi S., Chen C., Zhao B. Air infiltration rate distributions of residences in Beijing. Building and environment. 2015. Vol. 92. P. 528–537. URL: https://doi.org/10.1016/j.buildenv.2015.05.027 (date of access: 27.09.2023).

Assessment of indoor environmental quality in existing multi-family buildings in North-East Europe / L. Du et al. Environment international. 2015. Vol. 79. P. 74–84. URL: https://doi.org/10.1016/j.envint.2015.03.001 (date of access: 27.09.2023).

Comparing methods of modeling air infiltration through building entrances and their impact on building energy simulations / S. Goubran et al. Energy and buildings. 2017. Vol. 138. P. 579–590. URL: https://doi.org/10.1016/j.enbuild.2016.12.071 (date of access: 27.09.2023).

Sherman M. H., Walker I. S., Lunden M. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods. International journal of ventilation. 2014. Vol. 13(1):13-27. URL: https://doi.org/10.1080/14733315.2014.11684034 (date of access: 27.09.2023).

Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia / V. Földváry et al. Building and environment. 2017. Vol. 122. P. 363–372. URL: https://doi.org/10.1016/j.buildenv.2017.06.009 (date of access: 27.09.2023).

Determining the ventilation and aerosol deposition rates from routine indoor-air measurements / C. H. Halios et al. Environmental monitoring and assessment. 2013. Vol. 186(1). URL: https://doi.org/10.1007/s10661-013-3362-5 (date of access: 27.09.2023).

Sherman M. Analysis of errors associated with passive ventilation measurement techniques. Building and environment. 1989. Vol. 24, no. 2. P. 131–139. URL: https://doi.org/10.1016/0360-1323(89)90002-4 (date of access: 27.09.2023).

Ventilation rates in the bedrooms of 500 Danish children / G. Bekö et al. Building and environment. 2010. Vol. 45, no. 10. P. 2289–2295. URL: https://doi.org/10.1016/j.buildenv.2010.04.014 (date of access: 27.09.2023).

ДСТУ Б EN 15251:2011. Розрахункові параметри мікроклімату приміщень для проектування та оцінки енергетичних характеристик будівель по відношенню до якості повітря, теплового комфорту, освітлення та акустики (en 15251:2007, idt). На заміну уведено врерше ; чинний від 2023-01-01. Вид. офіц. Київ : Держ. підприємство "Укрархбудінформ", 2012. 71 с.

Przekop R. Oxygen transport in human alveolar sacs. Chemical engineering transactions. 2011. Vol. 24. P. 565–570. URL: https://doi.org/10.3303/CET1124095 (date of access: 27.09.2023).

Kapalo P., Voznyak O. Experimental measurements of a carbon dioxide concentration for determining of a ventilation intensity in a room at pulsing mode. Journal of civil engineering, environment and architecture. 2016. Vol. 62 (4/15). P. 201–210. URL: https://doi.org/10.7862/rb.2015.189 (date of access: 27.09.2023).

American Society of Heating Refrigerating and Air-Conditioning Engineers. 2013 ASHRAE handbook : fundamentals. Atlanta, GA : ASHRAE, 2013.

ASTM D6245-18. Standard guide for using indoor carbon dioxide concentrations to evaluate indoor air quality and ventilatio. Replaces ASTM D6245-12 ; effective from 2023-06-01. Official edition. West Conshohocken, PA : American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2018.

Integrated approaches to determination of CO2 concentration and air rate exchange in educational institution / V. Deshko et al. Rocznik ochrona środowiska. 2020. Vol. 22. P. 82–104.

ДБН В.2.5-67:2013. Опалення, вентиляція та кондиціонування. На заміну СНиП 2.04.05-91 Опалення, вентиляція и кондиціювання. Крім розділу 5 та додатка 22 ; чинний від 2014-01-01. Вид. офіц. Київ : Мінрегіон України, 2013. 147 с.

ДСТУ Б EN 15251:2011. Розрахункові параметри мікроклімату приміщень для проектування та оцінки енергетичних характеристик будівель по відношенню до якості повітря, теплового комфорту, освітлення та акустики (EN 15251:2007, IDT). Чинний від 2013-07-01. Вид. офіц. Київ : М-во регіон. розвитку, буд-ва та житлово-комун. госп-ва України, 2012. 65 с.

Дешко В. І., Білоус І. Ю., Гетманчук Г. О. Дослідження повітрообміну в квартирі на основі експериментального визначення масопереносу со2. Енергетика і автоматика. 2023. Т. 3.

ДСТУ-Н Б В.1.1-27:2010. Будівельна кліматологія. На заміну СНиП 2.01.01-82 і таблицю 2 ДСТУ-Н Б А.2.2-5:20О7 ; чинний від 2011-11-01. Вид. офіц. Київ : Укрархбудінформ, 2011. 123 с.

Published

2023-11-16

Issue

Section

ENERGY EFFICIENCY AND ENERGY SAVINGS