РЕАЛІЗАЦІЯ КОНЦЕПЦІЇ SMART GRID ЗА РАХУНОК ВИКОРИСТАННЯ ПРОГРАМ З КЕРУВАННЯ ПОПИТУ І СУЧАСНИХ СИСТЕМ СИЛОВОЇ ЕЛЕКТРОНІКИ

Serhii Petrovych Denysiuk, Vitalii Pavlovych Opryshko, Ryszard Michal Strzelecki

Анотація


Сучасні тенденції в мережах електропостачання спрямовані на інтелектуалізацію існуючих мереж енергопостачання та створення систем Smart Grid для забезпечення високого рівня надійності та якості електроенергії. В рамках програм з керування попитом, концепція Smart Grid відіграє важливу роль в рішенні технічних і технологічних проблем в процесі реалізації даної концепції. Мережа електропостачання повинна реалізувати низку програм керування попитом шляхом надання різних послуг в залежності від ситуації, вимог контрактів, прогнозування споживання / попиту і наявної інформації про рівень економії енергії. Це вимагає детального аналізу існуючих і розробки нових програм. Згідно концепції Smart Grid все більшого використання в розподільних мережах отримують сучасні устаткування силової електроніки. Дослідження існуючих моделей і конструкцій забезпечують базу для удосконалення існуючих конфігурацій та розуміння сучасних тенденції в галузі.

Ключові слова


Smart Grid; керування попитом; електричні мережі; силова електроніка

Повний текст:

PDF (English)

Посилання


UK Department of Energy and Climate Change. Smarter grids: the opportunity, December [Online]. Available: http://www.techuk-e.net//Portals/0/Cache/(DECC)SmartGrid_web.pdf; 2009.

US Department of Energy. Smart Grid system report, July [Online]. Available: http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/SGSR_ Annex_A-B_090707_lowres.pdf; 2009.

Smart grids European Technology Platform. Strategic deployment document for Europe's electricity grids of the future, April [Online]. Available: http://www.smartgrids.eu/documents/SmartGrids_SDD_FINAL_APRIL2010. pdf; 2010.

Eduardo F. Camacho, Tariq Samad, Mario Garcia-Sanz, and Ian Hiskens Control for Renewable Energy and Smart grids.

[CEN-CENELEC-ETSI Smart Grid Coordination Group Smart Grid Reference Architecture November 2012.

Denysiuk S.P. Opryshko V.P Assessment of energy sector companies innovation management effectiveness promising problems of economics and management Montreal, Canada, 2015.

International Scientific Conference: Energy savings, energy efficiency and energy audit in Ukraine. 21st October. Modern problems of energy efficiency in Ukraine and building of energy management system.

Logenthiran T, Srinivasan D, Shun T Z. Demand side management in Smart Grid using heuristic optimisation. IEEE Trans Smart Grid 2012; 3 (3) :1244–52.

Koutsopoulos I, Tassiulas L. Challenges in demand load controlfortheSmart Grid. IEEE Netw 2011; 25 (25): 16–21.

Strbac G. Demand side management: benefits and challenges. Energy Policy 2008;36(12):4419–26.

Khodayar M E,Wu H. Demand forecasting in the Smart Grid paradigm: features and challenges. Electr J 2015; 28(6): 51–62.

Saad W, Han Z, Poor H V, Basar T. Game-theoretic methods for the Smart Grid: an overview of microgrid systems, demand-side management, and Smart Grid communications. IEEE Signal Process Mag2012; 29(5):86–105.

Kim J H, Shcherbakova A. Common failures of demand response. Energy 2011;36(2):873–80.

Spees K, Lave L B. Demand response and electricity market efficiency. Electr J 2007; 20(3): 69–85.

Wang J, Bloyd C N, Hu Z, Tan Z. Demand response in China. Energy 2010; 35 (4):1592–7.

Ming Z, Li S, Yanying H. Status, challenges and counter measures of demand- side management development in China. Renew Sustain Energy Rev 2015; 47: 284–94.

Gelazanskas L, Gamage K A A. Demand side management in Smart Grid: a review and proposals for future direction. Sustain Cities Soc2014; 11:22–30.

Ghicajanu M. Programs of energy efficiency - Demand Side Management [Text] / М. Ghicajanu. – [International conference on economics, law and management]. - 2008.

Barbato A. A Power Scheduling Game for Reducing the Peak Demand of Residential Users Online Conference on Green Communications (GreenCom) [Text] / А. Barbato. – ІЕЕЕ, 2013.

Marco Liserre, Thilo Sauter, and John Y. Hung, “Future Energy Systems”, IEEE Industrial Electronics Magazine, March 2010.

Lubos´ny Z. Elektrownie wiatrowe w systemie elektroenergetycznym. Warszawa: Wyd. Naukowo-Techniczne; 2006.

Blaabjerg F, Chen Z. Power electronics for modern wind turbines. Morgan & Claypool; 2006.

Heier S, Waddington R. Grid integration of wind energy conversion systems. Wiley Blackwellm; 2006.

Simo˜es MG. Renewable energy systems. Design and analysis with induction generators. CRC Press; 2004.

Boldea I. Variable speed generators. Taylor & Francis Group; 2006.

Gientkowski Z. Autonomiczne pra˛dnice indukcyjne o wzbudzeniu kondensatorowym i przekształtnikowym. Bydgoszcz: Wydawnictwa Uczelniane ATR w Bydgoszczy; 1997.

Bose BK. Power electronics and motor drives: advances and trends. Academic Press; 2006.

Quang NP. Vector control of three-phase AC machines: system development in the practice. Springer; 2008.

Kazimierkowski M, Krishnan R, Blaabjerg F. Control in power electronics. Academic Press; 2002.

Emadi A, Nasiri A, Bekiarov SB. Uninterruptible power supplies and active filters. CRC Press; 2005.

Guerrero MA, Supercapacitors:. Alternative energy storage systems. Przegla˛d Elektrotechniczny 2009;85(10):188–95.

Sourkounis C, Ni B, Richter F. Comparison of energy storage management methods to smooth power fluctuations of wind parks. Przegla˛d Elektrotechniczny 2009;85(10):196–200.

Blaabjerg F, Chen Z, Kjaer SB. Power electronics as efficiency interface in dispersed power generation systems. IEEE Trans Power Electron 2004;19(5):1184–94.

Dunlop JP. Photovoltaic systems. American Technical Publication; 2009.

Enjeti P, Palma L, Todorocic MH. Power conditioning systems for fuel cell applications. John Wiley & Sons; 2009.

Lai JS. Power conditioning circuit topologies. IEEE Ind Electron Mag 2009;3(2):24–34.

Luo FL. Essential DC/DC converters. CRC Press; 2006.

Calais M, Myrzik J, Spooner T, Agelidis VG. Inverters for single-phase grid connected photovoltaic systems – an overview. Conf Proc PESC 2002;4(23– 27):1995–2000.

Huang Y, Shen M, Peng FZ, Wang J. Z-Source inverter for residential photovoltaic systems. IEEE Trans Power Electron 2006;21(6):176–82.

Strzelecki R, Bury W, Adamowicz M, Strzelecka N. New alternative passive grids to improve the range output voltage regulation of the PWM inverters. Conf Proc APEC 2009; 857–63.

Januszewski S, S´wiatek H, Zymmer K. Przyrza˛dy energoelektroniczne i ich zastosowania. Warszawa: Wyd. Ksia˛z˙ kowe Instytutu Elektrotechniki; 2008.

Kazimierczuk MK. High frequency magnetics components. John Wiley & Sons; 2009.

Emadi A. Integrated power electronic converters and digital control. CRC Press; 2009.

Liu W, Dirker J, van Wyk JD. Power density improvement in integrated electromagnetic passive modules with embedded heat extractors. IEEE Trans Power Electron 2008;23(6):3142–50.

Ito Y, Zhongqing Y, Akagi H. DC microgrid based distribution power generation system. Conf Proc IPEMC 2004;3:1740–5.

Lasseter R, Paigi P. Microgrid: a conceptual solution. Conf Proc PESC 2004;6:4285–90.

Ise T. Advantages and circuit configuration of a DC Microgrid. In: Proc. of the symposium on microgrids; 2006.

Kakigano H.In: Fundamental characteristics of DC micro-grid for residential houses with cogeneration system in each house; 2008.p. 1–8.

T.Samad and A.M. Annaswamy, “The Impact of control technology- Control for renewable energy and Smart Grid” www.ieeecss.org. (eds), 2011.


Пристатейна бібліографія ГОСТ






DOI: https://doi.org/10.20535/1813-5420.4.2016.98434

___________________________________________________________

© Кафедра електропостачання, Інститут енергозбереження та енергоменеджменту, НТУУ 'КПІ ім. Ігоря Сікорського' 2016 р.

Адміністратор web-сайту Закладний О.О. zakladniy@gmail.com