OPTIMIZATION OF THE USE OF DISTRIBUTED ENERGY RESOURCES IN LOCAL ELECTRICAL POWER SYSTEMS ACCORDING TO THE CRITERION OF MINIMUM LOSS OF ELECTRICITY

Authors

DOI:

https://doi.org/10.20535/1813-5420.4.2023.290880

Keywords:

local electric power systems, distributed energy resources, Energy Internet, energy router, energy processes, Friese power, factors of distortion of energy consumption, components of electricity losses, optimization procedures.

Abstract

The issue of optimizing the use of distributed energy resources in local electric power systems (LES) based on the criterion of minimum power loss is considered. It was determined that an important step in optimizing the use of distributed energy resources in the LES is the development of an energy router that allows devices that generate, store, and consume electricity to be combined into a single system at low voltage (without integration into medium voltage electrical networks). The energy router itself can be positioned as a basic device that ensures the operation of LES, the interaction of neighboring LES at the level of energy and information exchange, and the integration of specific LES to medium voltage distribution networks.

It is shown that the basic component of the evaluation of the effective functioning of energy routers and the platform approach in the LES, in accordance with the requirements of the Energy Internet, is the analysis of the components of electricity losses, the influence on their level of various factors, as well as the formation of appropriate energy efficiency criteria and the assessment of the partial impact of LES elements. It is proposed to carry out a description of energy processes during the decomposition of Frize reactive power with the allocation of reactive and active current in the controlled intersections of the system. The decomposition of the QF power into components under the action of various causes (factors) of additional electricity losses in the LES, in particular, due to different modes of operation of generators and LES loads (voltage and current spectra), both during the period of system operation and for an arbitrary period of time, was considered. which is determined by technological factors of system operation.

The use of Frize power made it possible to take into account the energy supply processes of LES loads on alternating and direct current from a single point of view, in particular, to assess the impact of a combination of various factors of the appearance of additional electricity losses; comparison of electricity losses for different time intervals through a selected controlled intersection, when the direction of the flow of electricity is constant or the direction of the flow of electricity changes during separate time intervals; analysis of electricity losses in direct and alternating current systems of LES or hybrid systems, where modified capacities are introduced, as integral estimates of the discrepancy, which determines the influence of distorting factors; assessment of the impact of changes in voltage and current in the intersection of LES of limited power on the components of additional losses; analysis of changes in load consumption of active power according to the first harmonic and higher harmonics as integral indicators.

References

Global Energy Transformation: A Roadmap to 2050. IRENA. 2019. 52 p.

Maria Luisa Di Silvestre, Salvatore Favuzza, Eleonora Riva Sanseverino, Gaetano Zizzo. How Decarbonization, Digitalization and Decentralization are changing key power infrastructures. Renewable and Sustainable Energy Reviews. 2018. Volume 93. P. 483–498. https://doi.org/10.1016/j.rser.2018.05.068

Денисюк С.П. Енергетичний перехід–вимоги якісних змін у розвитку енергетики. Енергетика: економіка, технології, екологія. 2019. №. 1. С. 7–28.

The Energy Internet. An Open Energy Platform to Transform Legacy Power Systems into Open Innovation and Global Economic Engines. Edited by Wencong Su, Alex Q. Huang, Elsevier Ltd, 2019. 380 p.

Kloppenburg, S., Boekelo, M. Digital platforms and the future of energy provisioning: Promises and perils for the next phase of the energy transition. Energy Research & Social Science. 2019. Vol. 49. P. 68–73.

Кириленко О.В., Жуйков В.Я., Денисюк С.П. Використання динамічної тарифікації для оптимізації техніко-економічних показників ЛЕС на локальних ринках електроенергії. Техн. електродинаміка. 2022. № 3. С. 37–48. doi:10.15407/techned2022.03.037

https://social-innovation.hitachi/en-eu/about/white-papers/digital-energy/the-future-of-energy/

Bin Liu, Bingzhao Zhu, Ziyou Guan, Chengxiong Mao, Dan Wang. Energy router interconnection system: A solution for new distribution network architecture toward future carbon neutrality. – https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/enc2.12062. doi.org/10.1049/enc2.12062

Xianyang Cui, Yulong Liu, Ding Yuan, Tao Jin, Mohamed A. Mohamed. A Hierarchical Coordinated Control Strategy for Power Quality Improvement in Energy Router Integrated Active Distribution Networks. Sustainability. 2023, 15(3), 2655. doi.org/10.3390/su15032655

Zhang, J., Xu, Y., Wang, W., Juneja, A., Bhattacharya, S. Energy Router: Architectures and Functionalities toward Energy Internet. IEEE International Conference on Smart Grid Communications (SmartGridComm). Oct. 2011. doi: 10.1109/SmartGridComm.2011.6102340

Chen, R., Yang, Y., Jin, T. Protection and Control of Modern Power Systems. Article number 15: A hierarchical coordinated control strategy based on multi-port energy router of urban rail transit, 2022.

Zhang, J., Xu, Y., Wang, W., Juneja, A., Bhattacharya, S. Energy Router: Architectures and Functionalities toward Energy Internet. Oct. 2011.

Wang, K., Yu, J., Yu, Y., Qian, Y. A survey on energy internet: architecture, approach, and emerging technologies. IEEE Systems Journal. 2018. Vol. 12. № 3. P. 2403–2416.

Zeng, P., Li, H., He, H., Li, S. Dynamic energy management of a ЛЕС using approximate dynamic programming and deep recurrent neural network learning. IEEE Transactions on Smart Grid. 2019. Vol. 10, iss. 4. P. 4435–4445.

Zhu, J. Optimization of Power System Operation. N-Y.: John Wiley & Sons, 2015. – 638 p.

Denysiuk, S., Zaichenko, S., Opryshko, V., Derevianko, D. Assessment of consumers power consumption optimization based on demand side management. EUREKA, Physics and Engineering. 2021(2). P. 19–31. doi:10.21303/2461-4262.2021.001689

Жаркин А.Ф., Денисюк С.П., Попов В.А. Системы электроснабжения с источниками распределенной генерации. Київ: Наукова думка, 2017. 230 с.

Денисюк С.П. Аналіз та оптимізація енергопроцесів у розосереджених електроенергетичних системах. Технічна електродинаміка. 2016. № 4. С. 62–64.

Жуйков В.Я., Денисюк С.П. Енергетичні процеси в електричних колах з ключовими елементами. Київ: Текст, 2010. 264 с.

Lei, B., Xu, L., Wang, Z., Wang, Y., Huang, Q. Journal of Physics: Conference Series, Design of Multi-port Direct Current Energy Router. Conf. Ser. 2030 012027, 2021.

Liu, B., Zhu, B., Guan, Z., Mao, C., Wang, D. Energy router interconnection system: A solution for new distribution network architecture toward future carbon neutrality. Energy Convers. Econ. 3. 2022. P. 181–200.

Xie, Z., Manimaran, G., Vittal, V., Phadke, A. G., Centeno, V. An Information Architecture for Future Power Systems and Its Reliability Analysis. IEEE Transactions on Power Systems/ 2002/ vol. 17, No. 3. P. 857–863.

Денисюк С.П., Опришко В.П. Оцінка нерівномірності споживання та генерації електричної енергії в локальних електроенергетичних системах. Пр. Ін-ту електродинаміки НАН України. 2017. №48. С. 43–51.

Published

2023-11-16

Issue

Section

SMART GRID SYSTEMS AND TECHNOLOGIES