FEATURES OF CREATION OF THE SMART MONITORING SYSTEMS FOR MICROGRIDS

Authors

  • Denys Derevianko National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine https://orcid.org/0000-0002-4877-5601
  • Oleksandra Perehuda National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine

DOI:

https://doi.org/10.20535/1813-5420.1.2024.298816

Keywords:

Microgrid, monitoring systems, renewable energy sources, energy storage systems, prosumers.

Abstract

In this paper, an analysis of the main requirements for control systems in Microgrid is conducted. The main objectives of the implementation of Microgrid systems were determined and, based on the performed analysis, the requirements for Smart-monitoring systems were systematized. The components of Smart-monitoring systems, which include: communication software platform, hardware communication platform and types of equipment of DG sources for Microgrid systems were analyzed. It is proposed to build Smart-monitoring systems for Microgrid systems on the basis of the SGAM model, taking into account various models of aggregation of different types of DG sources within the framework of Microgrid systems. The proposed structure of the Smart-monitoring system for Microgrid systems with various DG sources makes it possible to effectively aggregate DG sources and prosumers and to carry out effective dispatching of generating capacities based on market mechanisms of their interaction with consumers and among themselves.

References

Carpintero-Rentería, M., Santos-Martín, D., & Guerrero, J. M. (2019). Microgrids Literature Review through a Layers Structure. Energies, 12(22), 4381. doi:10.3390/en12224381

Денисюк С.П., Дерев`янко Д.Г., Бєлоха Г.С. Синтез моделей локальних електроенергетичних систем з джерелами розосередженої генерації. Технічна електродинаміка. 2022. № 4. С. 60–69. DOI: https://doi.org/10.15407/techned2022.04.048

Blinov I.V., Trach I.V., Parus Ye. V., Derevianko D.H., Khomenko V.M. Voltage and reactive power regulation in distribution networks by the means of distributed renewable energy sources. Tekhnichna elektrodynamika. 2022. No 2. Pp. 60–69. DOI: https://doi.org/10.15407/techned2022.02.060

Ackerman T. Knyazkin V. Interaction between distributed generation and the distribution network. Transmission and Distribution Conference and Exhibition: Asia Pacific IEEE/PES. – 2000. – Vol. 2. – P. 1357–1362.

Esposito G., Zaninelli D., Lazaroiu G. C., Golovanov N., Impact of embedded generation on the voltage quality of distribution networks. 2007 9th International Conference on Electrical Power Quality and Utilisation, Barcelona, Spain, 2007, pp. 1-6, DOI: https://doi.org/10.1109/EPQU.2007.4424154.

https://www.iea.org/energy-system/renewables

O. Kyrylenko et al. (eds.), Power Systems Research and Operation, Studies in Systems, Decision and Control 512, https://doi.org/10.1007/978-3-031-44772-3_10

Elmouatamid, A.; Ouladsine, R.; Bakhouya, M.; El Kamoun, N.; Khaidar, M.; Zine-Dine, K. Review of Control and Energy Management Approaches in Micro-Grid Systems. Energies 2021, 14, 168. https://doi.org/10.3390/en14010168

Денисюк С.П. Дерев`янко Д.Г., Бєлоха Г.С., Зайченко С.В. Цінові моделі агрегування для Microgrid систем з розосередженими джерелами енергії. Енергетика: економіка, технології, екологія. 2022. № 3. С. 7–12. ISSN 1813-5420. DOI: https://doi.org/10.20535/1813-5420.3.2022.270225

Goutam Dutta, Krishnendranath Mitra. A literature review on dynamic pricing of electricity. Journal of the Operational Research Society (2017) 68, 1131–1145.

Kirpes, B., Mengelkamp, E., Schaal, G. & Weinhardt, C. (2019). Design of a microgrid local energy market on a blockchain-based information system. it - Information Technology, 61(2-3), 87-99. https://doi.org/10.1515/itit-2019-0012

S. Denysiuk and D. Derevianko, "The Cost Based DSM Methods in Microgrids with DG Sources," 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), 2021, pp. 544-548, doi: 10.1109/KhPIWeek53812.2021.9570096.

F. Jamil, N. Iqbal, Imran, S. Ahmad and D. Kim, "Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid," in IEEE Access, vol. 9, pp. 39193-39217, 2021, doi: 10.1109/ACCESS.2021.3060457.

Chung, I.Y., Liu, W.X., Cartes, D.A., Collins, E.G.,Moon, S.I. (2010). Control methods of inverter-interfaced distributed generators in a microgrid system.IEEE Trans. Ind. Appl., 46(3): 1078-1088.https://doi.org/10.1109/TIA.2010.2044970

Villalón, A.; Rivera, M.; Salgueiro, Y.; Muñoz, J.; Dragičević, T.; Blaabjerg, F. Predictive Control for Microgrid Applications: A Review Study. Energies 2020, 13, 2454. https://doi.org/10.3390/en13102454

Chowdhury S.. Microgrids and Active Distribution, Networks / S. Chowdhury, S. P. Chowdhury, P. Crossley // - London, UK, 2009.

James T. Reilly, From microgrids to aggregators of distributed energy resources. The microgrid controller and distributed energy management systems, The Electricity Journal, Volume 32, Issue 5, 2019, Pages 30-34, ISSN 1040-6190, https://doi.org/10.1016/j.tej.2019.05.007.

J. P. Lopes, et al., "Defining control strategies for microgrids islanded operation," Power Systems, IEEE Transactions on, vol. 21, pp. 916-924, 2006.

Published

2024-03-28

Issue

Section

MONITORING, DIAGNOSTICS AND MANAGEMENT BY ENERGY PROCESSES AND EQUIPMENT