HEAT EXCHANGE IN THE HEATING ZONE OF ALUMINUM GROOVED HEAT PIPES
DOI:
https://doi.org/10.20535/1813-5420.3.2024.314612Keywords:
heat pipe, thermosyphon, heat transfer coefficient, capillary structure, boiling, experiment.Abstract
At the present time, autonomous closed two-phase heat transfer systems - heat pipes (TT) are increasingly used in the systems for ensuring the thermal regimes of some space and ground vehicles. When developing and using such devices, it is necessary to solve the issue of optimizing the characteristics of these systems, which is most realistic to do on the basis of experiments conducted in working conditions. One of the important characteristics is the intensity of heat exchange in the heating zone of the heat pipe during its operation. The article presents the results of experimental studies of heat transfer in the heating zone for different working fluids on the internal developed surface in the form of an Ω-shaped capillary structure of an aluminum heat pipe operating in thermosiphon mode, i.e. the pipe was located vertically, the heating zone was located below. The experiments were carried out on experimental samples of aluminum heat pipes in the range of supplied heat fluxes from 0.1·104 W/m2 to 1.4·104 W/m2 and temperatures of the saturated steam of the working fluid from +30°C to +90°C. The research results are compared with the literature data on the heat exchange of these investigated working fluids on smooth surfaces in conditions of a large volume, and the criterion dependence of the calculation of the intensity of heat exchange for these conditions is obtained.
References
Heat Pipes: Theory, Design and Applications / D. Reay et al. Elsevier Science & Technology Books, 2022. 288 p.
Space-applied aluminum profiled heat pipes with axial grooves: experiments and simulation / B. Rassamakin et al. Heat Pipe Science and Technology, An International Journal. 2010. Vol. 1, no. 4. P. 313–327. URL: https://doi.org/10.1615/heatpipescietech.v1.i4.20
Pis'mennyi E., Khairnasov S., Rassamakin B. Heat Transfer in Evaporation Zone of Ammonia Aluminium Heat Pipes. Research Bulletin of the National Technical University of Ukraine "Kyiv Politechnic Institute". 2017. No. 1. P. 14–23. URL: https://doi.org/10.20535/1810-0546.2017.1.82925
The study of the heat-engineering characteristics of a solar heat collector based on aluminum heat pipes / S. M. Khairnasov et al. Applied Solar Energy. 2013. Vol. 49, no. 4. P. 225–231. URL: https://doi.org/10.3103/s0003701x13040051
Rassamakin B., Khairnasov S., Anisimova A. Thermal performance of aluminium grooved heat pipes. 2016 International Conference on Electronics and Information Technology (EIT), Odessa, Ukraine, 23–27 May 2016. 2016. URL: https://doi.org/10.1109/iceait.2016.7500979
Батуркин В. М., Шевель Е. В. Исследование гидродинамических характеристик конструкционных капиллярных структур в тепловых трубах. Східно-Європейський журнал підприємницьких технологій. 2009. Вип. 3, № 6. С. 30-36.
Kozak D. V., Nikolaenko Y. E. The working characteristics of two-phase heat transfer devices for LED modules. 2016 International Conference on Electronics and Information Technology (EIT), Odessa, Ukraine, 23–27 May 2016. 2016. URL: https://doi.org/10.1109/iceait.2016.7500980
Николаенко Ю. Е., Козак Д. В., Хайрнасов С. М. Коэффициенты теплоотдачи в зонах испарения и конденсации алюминиевой тепловой трубы с резьбовидной капиллярной структурой. Труди XVІІІ міжнародної науково-практичної конференції «Сучасні інформаційні та електронні технології», 22-26 травня, Одеса. 2017. С. 37-38.
Николаенко Ю. Е., Козак Д. В., Хайрнасов С. М. Сравнение тепловых характеристик термосифона и гравитационной тепловой трубы одинаковых размеров. Труди XVІІ міжнародної науково-практичної конференції «Сучасні інформаційні та електронні технології», 23-27 травня, Одесса. 2016. С. 164-165.
Khairnasov S., Rassamakin B., Kozak D. Experimental investigations of aluminum thermosyphons for a photovoltaic thermal module. Heat Pipe Science and Technology, An International Journal. 2015. Vol. 6, no. 3-4. P. 205–215. URL: https://doi.org/10.1615/heatpipescietech.v6.i3-4.80
Investigation performance of axial grooved heat pipes with high thermal capacity/ V. Barantsevith et al. Proc. of 12th International Heat Pipe Conference, Moscow, Russia. 2002. P. 489-494
J.P. Alario et al. Method of making a re-entrant groove heat pipe : patent U.S. Patent 4 457 059 United States. Applied on 03.07.1984.
Kim C., Lee K.-S., Yook S.-J. Effect of air-gap fans on cooling of windings in a large-capacity, high-speed induction motor. Applied Thermal Engineering. 2016. Vol. 100. P. 658–667. URL: https://doi.org/10.1016/j.applthermaleng.2016.02.077
Thermal enhancement by using grooves and ribs combined with delta-winglet vortex generator in a solar receiver heat exchanger / L. Luo et al. Applied Energy. 2016. Vol. 183. P. 1317–1332. URL: https://doi.org/10.1016/j.apenergy.2016.09.077
Ibrahim E., Moawed M., Berbish N. S. Heat transfer characteristics of rotating triangular thermosyphon. Heat and Mass Transfer. 2012. Vol. 48, no. 9. P. 1539–1548. URL: https://doi.org/10.1007/s00231-012-0995-9
Two-phase closed thermosyphons: A review of studies and solar applications / D. Jafari et al. Renewable and Sustainable Energy Reviews. 2016. Vol. 53. P. 575–593. URL: https://doi.org/10.1016/j.rser.2015.09.002
Theoretical and Experimental Analysis of the Steady Flow Across the Cylinderhead of a Low-Capacity Engine / A. Castilla et al. Journal of Applied Mechanics. 2016. Vol. 83, no. 12. URL: https://doi.org/10.1115/1.4034619
Kumar A., Dhiman A., Baranyi L. Fluid flow and heat transfer around a confined semi-circular cylinder: Onset of vortex shedding and effects of Reynolds and Prandtl numbers. International Journal of Heat and Mass Transfer. 2016. Vol. 102. P. 417–425. URL: https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.026
Kuznetsov G.V., Sitnikov A.E. Numerical analysis of basic regularities of heat and mass transfer in high-temperature heat pipe. TVT. 2002. Vol. 40, Iss. 6. P. 964–970. URL: doi: 10.1023/a:1021437502952
Kuznetsov G. V., Al-Ani M. A., Sheremet M. A. Numerical analysis of convective heat transfer in a closed two-phase thermosyphon. Journal of Engineering Thermophysics. 2011. Vol. 20, no. 2. P. 201–210. URL: https://doi.org/10.1134/s1810232811020081
Fadhl B., Wrobel L. C., Jouhara H. Numerical modelling of the temperature distribution in a two-phase closed thermosyphon. Applied Thermal Engineering. 2013. Vol. 60, no. 1-2. P. 122–131. URL: https://doi.org/10.1016/j.applthermaleng.2013.06.044
Семена М. Г., Киселев Ю. Ф. Исследование теплообмена в зоне теплоподвода двухфазных термосифонов при малых степенях заполнения // Инженерно-физический журнал. ТОМ 35, №4. С. 600-605.
Кутателадзе C.C. Теплопередача при конденсации и кипении Машгиз, 1952, 232 с.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).