EVALUATION OF COMPLEX INDICATORS FOR FORECASTING THE STRATEGIC DEVELOPMENT OF RENEWABLE ENERGY SOURCES OF UKRAINE WITHIN THE STRUCTURE OF RENEWABLE NATIONAL ENERGY INDUSTRY OF UKRAINE
DOI:
https://doi.org/10.20535/1813-5420.3.2024.314624Keywords:
renewable energy, forecasting systems, Holt's method, biomass, solar energy, wind energy, TPP (Thermal power plant) on biomass, RES (renewable energy sources).Abstract
The article is devoted to a systematic review of modern trends in the use of renewable energy sources and their impact on the country's energy system. The basis of the analysis is the assessment of the degree of technological maturity of renewable energy technologies, the effectiveness of their implementation in comparison with traditional energy sources. Thanks to a wide range of analysis, the article makes an important contribution to understanding the prospects and determinants of effective implementation of renewable national energy in the context of modern energy challenges and can serve as a basis for further research in this field.
In this article, the Holt method was chosen as the main method for forecasting - to build forecast models for four key components of renewable energy sources (RES) in Ukraine - wind, solar, hydropower and biomass. Based on the forecasting results, the authors determined the prospects for the development of renewable national energy in Ukraine. The obtained results emphasize the strategic importance of intensifying efforts in the field of development, attracting investments and revising the energy policy with the aim of aligning it with global trends towards a carbon-neutral economy. Appropriate recommendations have been developed regarding the revision of the Energy Strategy of Ukraine and the optimization of the legal framework for effective supervision of the proper condition of all generating capacities of the energy system. In the light of these forecasts, the article emphasizes the need for proactive measures to ensure the sustainable and growth of the ecologically clean strategic sector - renewable national energy of Ukraine.
References
Zaichenko S. et al. Substantiation of diagnostic parameters of autonomous sources of electric energy on the basis of the internal combustion engine at development of system of technical diagnostics //POWER ENGINEERING: economics, technique, ecology. – 2020. – №. 3. – С. 29-34..
Zaichenko, S., & Derevianko, D. (2023). Comparison of the Energy Efficiency of Synchronous Power Generator with Spark Ignition Engine Using Different Types of Fuels. In Systems, Decision and Control in Energy V (pp. 155-177). Cham: Springer Nature Switzerland.
Zaichenko, S., Shevchuk, S., Opryshko, V., Pryadko, S., & Halem, A. (2020, May). Autonomous electric power source energy efficiency improvement by internal combustion engine gases distribution control. In 2020 IEEE 7th International Conference on Energy Smart Systems (ESS) (pp. 262-265). IEEE.
Kulbovskyi, I., Holub, H., Skliarenko, I., Sorochynska, O., Gurenkova, O., Kyiashko, V., & Kharuta, V. (2020). Investigation of the model of functioning of production and technological potential of subway power supply departments. In Transport Means-Proceedings of the International Conference (pp. 416-420).
Holub, H., Kulbovskyi, I., Skok, P., Bambura, O., Melnychenko, O., Kharuta, V., & Tretynychenko, Y. (2020). System model of information flows in networks of the electric supply system in transport infrastructure projects. In Transport Means-Proceedings of the International Conference (pp. 132-135).
Walmsley, TG, Philipp, M., Picón-Núñez, M., Meschede, H., Taylor, MT, Schlosser, F., & Atkins, MJ (2023). Hybrid renewable energy utility systems for industrial sites: A review. Renewable and Sustainable Energy Reviews, 188, 113802.
Onu, P., Pradhan, A., & Mbohwa, C. (2023). The potential of industry 4.0 for renewable energy and materials development–The case of multinational energy companies. Heliyon, 9(10).
Nguyen, TTH, Phan, GQ, Tran, TK, & Bui, HM (2023). The role of renewable energy technologies in enhancing human development: Empirical evidence from selected countries. Case Studies in Chemical and Environmental Engineering, 8, 100496.
Ge, T., Ge, Y., Lin, S., & Ji, J. (2023). Do energy intensity reduction targets promote renewable energy development? Evidence from partially linear functional-coefficient models. Energy Strategy Reviews, 49, 101165.
Wali, SB, Hannan, MA, Ker, PJ, Abd Rahman, MS, Tiong, SK, Begum, RA, & Mahlia, TI (2023). Techno-economic assessment of a hybrid renewable energy storage system for rural communities towards achieving sustainable development goals. Energy Strategy Reviews, 50, 101217.
Schneider, N., & Rinscheid, A. (2024). The (de-) construction of technological legitimacy: Contending storylines surrounding wind energy in Austria and Switzerland. Technological Forecasting and Social Change, 198, 122929.
Calautit, K., & Johnstone, C. (2023). State-of-the-art review of micro to small-scale wind energy harvesting technologies for building integration. Energy Conversion and Management: X, 100457.
Gao, Q., Bechlenberg, A., Vakis, AI, Ertugrul, N., Jayawardhana, B., & Ding, B. (2022). Techno-economic assessment of offshore wind and hybrid wind-wave farms with energy storage systems. Available at SSRN 4358078.
Qu, LN, Ji, BX, Lim, MK, Shen, Q., Li, LL, & Tseng, ML (2023). A hybrid static economic dispatch optimization model with wind energy: Improved pathfinder optimization model. Energy Reports, 10, 3711-3723.
Loth, E. (2023). Wind energy value and deep decarbonization design, what's next?. Next Energy, 1(4), 100059.
AlZohbi, G., AlShuhail, L., & Almoaikel, A. (2023). An estimation of green hydrogen generation from wind energy: A case study from KSA. Energy Reports, 9, 262-267.
Cañadilla, A., Rodríguez, G., Romero, A., Caminero, MA, & Dura, OJ (2023). Sustainable production of copper components using concentrated solar energy in material extrusion additive manufacturing (MEX-CSE). Sustainable Materials and Technologies, e00799.
Arroyo, Á., Basurto, N., Casado-Vara, R., Timiraos, M., & Calvo-Rolle, JL (2024). A Hybrid Intelligent Modeling approach for predicting the solar thermal panel energy production. Neurocomputing, 565, 126997.
Kraaijvanger, CW, Verma, T., Doorn, N., & Goncalves, JE (2023). Does the sun shine for all? Revealing socio-spatial inequalities in the transition to solar energy in The Hague, The Netherlands. Energy Research & Social Science, 104, 103245.
Sayed, MA, Ahmed, MM, Azlan, W., & Kin, LW (2023). Peer to Peer Solar Energy Sharing System for Rural Communities. Cleaner Energy Systems, 100102.
Pourasl, HH, Barenji, RV, & Khojastehnezhad, VM (2023). Solar energy status in the world: A comprehensive review. Energy Reports, 10, 3474-3493.
Kotsialos, A., Papageorgiou, M., & Poulimenos, A. (2005). Holt-winters and neural-network methods for medium-term sales forecasting. IFAC Proceedings Volumes, 38(1), 133-138.
State Statistics Service of Ukraine [Electronic resource]. Available at: http://www.ukrstat.gov.ua.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).