STUDYING THE REGULARITIES OF THERMAL DECOMPOSITION OF SUNFLOWER HUSK UNDER CONDITIONS OF HIGH-SPEED HEATING

Authors

DOI:

https://doi.org/10.20535/1813-5420.3.2024.314639

Keywords:

husk, biomass, waste to energy, pyrolysis, combustion, heat and mass transfer

Abstract

Fuel waste from oil extraction plants sunflower husk is used to replace organic fuel. The study of the regularities of thermal decomposition of the husk under conditions of high-speed heating in boilers is the aim of this work.

The cellular model of sunflower husk (SH) includes three main components 3048% cellulose, 3438% hemicellulose and 1726% lignin. Depending on the structure, the elemental composition of the fuel, the quantitative and qualitative composition of volatiles, and, as a result, the calorific value differ. In addition, different molecular structures of individual components lead to different decomposition mechanisms during pyrolysis. Sunflower husk contains 1418% (by weight) of bound carbon, 7076% of volatiles, and 510% of moisture. The calorific value Qnr of the husk ranges from 1521 MJ/kg.

The thermal decomposition of SH in a fluidised bed at temperatures of 5001000 °C produces volatiles and solid coke residue (up to 2030% of the initial mass), which has low reactivity and high strength. To record waste gas yields, an experimental method was used to study the thermal processing of fuel in a laboratory reactor under conditions of high-speed heating in a fluidised bed using a mass spectrometer. Dynamic curves of waste gas yields have two distinctive sections: the first one corresponds to the release and burnout of volatiles, and the second, longer one to the burnout of coke residue. The second stage determines the completeness of the utilisation of sunflower husk fuel, the design features of the combustion chamber, efficiency and operating parameters of the process. To reduce heat losses due to mechanical underburning, it is recommended to carry out this stage at temperatures above 850900 oC. With an increase in temperature, a decrease in the total duration of husk burnout is observed. An empirical dependence of the burnout time of the husk in the fluidised bed on the temperature T was obtained: t = 3,55·1051,53±2, s.

References

O. V. Dakhnovska, “Shliakhy vykorystannia soniashnykovoho lushpynnia”, “Zbirnyk Naukovykh Prats Vinnytskoho Natsionalnoho Ahrarnoho Universytetu. Seriia: Tekhnichni Nauky”, vol. 11, no. 2. pp. 156-160, 2012. Available: http://nbuv.gov.ua/UJRN/znpvnutn_2012_11%282%29__25

V. I. Havrysh. “Lushpynnia soniashnyka yak enerhetychnyi resurs pererobnykh pidpryiemstv”, in Conf. Prychornomorska Rehionalna Naukovo-Praktychna Konferentsia “Rozvytok Ukrainskoho Sela – Osnova Ahrarnoi Reformy v Ukraini”, Mykolaiv, Ukraina, рр. 41-44, 2022. Available: https://dspace.mnau.edu.ua/jspui/handle/123456789/11441

K. V. Barannyk and M. D. Voloshyn, “Analiz vykorystannia soniashnykovoho lushpynnia u yakosti palyva”, Zbirnyk Naukovykh Prats Dniprovskoho Derzhavnoho Tekhnichnoho Universytetu. Tekhnichni Nauky, vol. 1, pp. 157-160, 2017. Available: http://nbuv.gov.ua/UJRN/Znpddtu_2017_1_31

T. Zheliezna, S. Drahniev, and A. Bashtovyi, “Opportunities for harvesting agrobiomass and production of biofuels by municipal enterprises in Ukraine”, Thermophysics and Thermal Power Engineering, vol. 41, no. 2, pp. 88-96, Mar. 2019. Available: https://doi.org/https://doi.org/10.31472/ttpe.2.2019.12

D. Duca, G. Toscano, G. Riva, C. Mengarelli, G. Rossini, A. Pizzi, et al., “Pedretti Quality of residues of the biodiesel chain in the energy field”, Industrial Crops and Products, vol. 75, Part A, pp. 91-97, Nov. 2015. Available: https://doi.org/10.1016/j.indcrop.2015.02.042

N. I. Dunayevska, D. L. Bondzyk, M. M. Nehamin, Ye. S. Miroshnichenko, I. V. Beztsennyi, V. Ya. Evtukhov, et al., “Technology of Anthracite and Solid Biofuels Co-Firing in Pulverized Coal Boilers of TPP and CHP”, Science and Innovation, vol. 16, no. 5, pp. 79-89, 2020. Available: https://doi.org/10.15407/scine16.05.079

I. A. Volchyn, L. S. Haponych, and V. O. Mokretskyy, “Estimation and forecasting of carbon dioxide emissions from coal-fired thermal power plants in Ukraine”, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, vol. 5, pp. 080 – 088, Oct. 2022. Available: https://doi.org/10.33271/nvngu/2022-5/080

G. Geletukha, S. Drahniev, T. Zheliezna, and A. Bashtovyi, “Analysis of directions of using sunflower production by-products for energy in Ukraine (review)”, Thermophysics and Thermal Power Engineering, vol. 42, no. 4, pp. 83-92, Jun. 2020. Available: https://doi.org/https://doi.org/10.31472/ttpe.4.2020.10

L. S. Haponych, I. L. Golenko, and А. І. Topal, “Legislation, current situation and prospects of using municipal solid waste as energy resource in Ukraine”, The Problems of General Energy, vol. 3, no. 58, pp. 45–54, 2019. Available: https://doi.org/10.15407/pge2019.03.045

O. Bulyandra, L. Haponych, I. Golenko, and O. Topal, “Prospects of the use of fuel from municipal solid waste at tpp of sugar factories”, Scientific Works of NUFT, Vol. 26, no. 3, pp. 137-147, June 2020.

T. Zheliezna, S. Drahniev, and A. Bashtovyi, “Analysis of successful cases of heat production from agrobiomass in Europe”, Thermophysics and Thermal Power Engineering, vol. 45, no. 2, pp. 38-46, Aug. 2022. Available: //ihe.nas.gov.ua/index.php/journal/article/view/489

M. Cherniavskyi, Y. Miroshnychenko, and O. Provalov, “Conversion of low and medium power boilers for combustion of solid fuel biomass”, Energ. Tech. & Res. Sav., no. 1, pp. 71-80, Mar. 2021. Available: https://doi.org/10.33070/etars.1.2021.08

I. V. Remeshevska, N. V. Gurets, and O. A. Omelchuk, “Analysis of efficiency of the industrial activity of the biomass energy-generating complex at the agroindustrial company Eugroil Ltd”, Collection of Scientific Papers of Admiral Makarov National University of Shipbuilding, vol. 3, pp. 136-142, 2017. Available: DOI 10.15589/jnn20170317

A. Topal, I. Holenko, and L. Haponych, “Сlean utilization of municipal solid wastes and alternative fuels derived from it”, Environmental Problems, vol. 5, no. 40, pp. 202-209, 2020. Available: https://doi.org/10.23939/ep2020.04.202.

Y. Lin, J. Cho, G. Tompsett, P. Westmoreland, and G. Huber, "Kinetics and mechanism of cellulose pyrolysis", The Journal of Physical Chemistry C, vol. 113, no. 46, p. 20097-20107, Oct. 2009. Available: https://doi.org/10.1021/jp906702p

P. Weerachanchai, M. Horio, and C. Tangsathitkulchai, “Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass”, Bioresource Technology, vol. 100, no. 3, pp. 1419-1427, Feb. 2009. Available: https://doi.org/10.1016/j.biortech.2008.08.002.

S. Yaman, “Pyrolysis of biomass to produce fuels and chemical feedstocks”, Energy Conversion and Management, 45, no. 5, pp. 651-671, March 2004. Available: https://doi.org/10.1016/S0196-8904(03)00177-8

A. Al-Farraji, R. Marsh, and J. A. Steer, “Comparison of the Pyrolysis of Olive Kernel Biomass in Fluidised and Fixed Bed Conditions”, Waste Biomass Valor, vol. 8, рр. 1273–1284, June 2017. Available: https://doi.org/10.1007/s12649-016-9670-6

Q. Xue, D. Dalluge, T. J. Heindel, R. O. Fox, and R. C. Brown, “Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors”, Fuel, vol. 97, pp. 757-769, July 2012. Available: https://doi.org/10.1016/j.fuel.2012.02.065.

M. Balat, M. Balat, E. Kırtay, and H. Balat, “Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems”, Energy Conversion and Management, vol. 50, no. 12, pp. 3147-3157, Dec. 2009. Available: https://doi.org/10.1016/j.enconman.2009.08.014

H. J. Kim, Y. Kasadani, L. Li, T. Shimizu, and L.-H. Kim, “Combustion and thermal decomposition characteristics of brown coal and biomass,” Journal of Energy Engineering, vol. 21, no. 4., pp. 373–377, Dec. 2012. Available: https://doi.org/10.5855/ENERGY.2012.21.4.373

T. Morgan and R. Kandiyoti, “Pyrolysis of Coals and Biomass: Analysis of Thermal Breakdown and Its Products”, Chemical Reviews, vol. 114(3), pp. 1547–1607, Oct. 2014. Available: https://doi.org/10.1021/cr400194p

P. R. Solomon, D. G. Hamblen, M. A. Serio, Z.-Z. Yu, and S. Charpenay, “A characterization method and model for predicting coal conversion behaviour”, Fuel, vol. 72(4), pp. 469-488, April 1993. Available: https://doi.org/10.1016/0016-2361(93)90106-C.

J. Yu, N. Paterson, J. Blamey, and M. Millan, “Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass”, Fuel, 191, pp. 140-149, March 2017. Available: https://doi.org/10.1016/j.fuel.2016.11.057.

G. Kabir and B. H. Hameed, “Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals”, Renewable and Sustainable Energy Reviews, 70, pp. 945-967, April 2017. Available: https://doi.org/10.1016/j.rser.2016.12.001.

D. Shen, R. Xiao, S. Gu, and H. Zhang, ‘The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass’, Cellulose – Biomass Conversion. InTechOpen, Aug. 2013. Available: https://doi.org/10.5772/51883

P. Giudicianni, G. Cardone, and R. Ragucci, “Cellulose, hemicellulose and lignin slow steam pyrolysis: thermal decomposition of biomass components mixtures”, Journal of Analytical and Applied Pyrolysis, 100, pp. 213-222, March 2013. Available: 10.1016/j.jaap.2012.12.026

A. Das, C. Mondal, and S. Roy, “Pretreatment methods of lignocellulosic biomass: A review”, Journal of Engineering Science and Technology, vol. 8, no. 5, pp. 141-165, Dec. 2015. Available: http://www.jestr.org/downloads/Volume8Issue5/fulltext85202015.pdf.

N. Ahmad, S. Aslam, N. Hussain, M. Bilal, and H. Iqbal, “Transforming Lignin Biomass to Value: Interplay Between Ligninolytic Enzymes and Lignocellulose Depolymerization”, BioEnergy Research, vol. 16, pp. 1246–1263. Sep. 2022. Available: https://doi.org/10.1007/s12155-022-10541-y

A. R. Mankar, A. Pandey, A. Modak, and K. K. Pant, “Pretreatment of lignocellulosic biomass: A review on recent advances”, Bioresource Technology, vol. 334, 125235, August 2021. Available: https://doi.org/10.1016/j.biortech.2021.125235

X. Zhou, L. J. Broadbelt, and Vinu R., “Chapter Two - Mechanistic Understanding of Thermochemical Conversion of Polymers and Lignocellulosic Biomass”, Advances in Chemical Engineering, vol. 49, pp. 95-198, 2016. Available: https://doi.org/10.1016/bs.ache.2016.09.002.

S. Marx, I. Chiyanzu, and N. Piyo, “Influence of reaction atmosphere and solvent on biochar yield and characteristics”, Bioresource Technology, vol. 164, pp. 177-183, July 2014. Available: https://doi.org/10.1016/j.biortech.2014.04.067.

D. Camargo, S. D. Gomes, M. D. Felipe, L. Sene, “Response of by-products of sunflower seed processing to dilute-acid hydrolysis aiming fermentable sugar production”, Journal of Food Agriculture & Environment, vol. 12, no. 2, pp. 239-246, Jan. 2014. Available: DOI: https://doi.org/10.1234/4.2014.4442

A. Demirbas, “The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis”, Fuel Processing Technology, vol. 88, no. 6, pp. 591-597, June 2007. Available: https://doi.org/10.1016/j.fuproc.2007.01.010

E. Foppa Pedretti, A. Del Gatto, S. Pieri, L. Mangoni, A. Ilari, M. Mancini, G. Feliciangeli, et al., “Experimental Study to Support Local Sunflower Oil Chains: Production of Cold Pressed Oil in Central Italy,” Agriculture, vol. 9, no. 11, p. 231, Oct. 2019. Available: https://doi.org/10.3390/agriculture9110231

A. Osmak and A. Seregin, “Alternative fuels – a promising direction for the energy complex of Ukraine”, Energ. Tech. & Res. Sav., no. 1, pp. 53-58, Mar. 2021. Available: https://doi.org/10.33070/etars.1.2021.06

E. Novaes, M. Kirst, V. Chiang, H. Winter-Sederoff and R. Sederoff, “Lignin and Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees”, Plant Physiology, vol. 154, no. 2, pp. 555–561, October 2010. Available: https://doi.org/10.1104/pp.110.161281

H. Niu and N. Liu, “Thermal decomposition of pine branch: Unified kinetic model on pyrolytic reactions in pyrolysis and combustion”, Fuel, vol. 160, pp. 339-345, Nov. 2015. Available: https://doi.org/10.1016/j.fuel.2015.07.108

L. M. Romero Millán, F. E Sierra Vargas., and A. Nzihou, “Kinetic Analysis of Tropical Lignocellulosic Agrowaste Pyrolysis”, BioEnergy Research, vol. 10, pp. 832–845, Sept. 2017. Available: https://doi.org/10.1007/s12155-017-9844-5

S. Pielsticker, B. Gövert, K. Umeki, R. Kneer, “Flash Pyrolysis Kinetics of Extracted Lignocellulosic Biomass Components”, Frontiers in Energy Research, vol. 9, 737011, Sept. 2021. Available: https://doi.org/10.3389/fenrg.2021.737011

G. Lv, S. Wu, G. Yang, J. Chen, Y. Liu, and F. Kong, “Comparative Study of Pyrolysis Behaviors of Corn Stalk and its Three Components”, Journal of Analytical and Applied Pyrolysis, vol. 104, pp. 185–193, 2013. Available: https://doi.org/10.1016/j.jaap.2013.08.005

D. K. Shen, S. Gu, “The mechanism for thermal decomposition of cellulose and its main products”, Bioresource Technology, vol. 100, no. 24, pp. 6496-6504, Dec. 2009. DOI: https://doi.org/10.1016/j.biortech.2009.06.095

D. Geldart, “Types of gas fluidization”, Powder Technology, vol. 7, no. 5, pp. 285-292, May 1973. Available: https://doi.org/10.1016/0032-5910(73)80037-3.

Published

2024-11-06

Issue

Section

SUSTAINABLE ENERGY