FORMATION OF A STRATEGY FOR INCREASING THE ENERGY EFFICIENCY OF METALLURGICAL ENTERPRISES AS GUARANTEE OF DECARBONIZATION OF THE UKRAINIAN ECONOMY
DOI:
https://doi.org/10.20535/1813-5420.2.2022.261493Keywords:
decarbonization, energy baseline, energy efficiency, energy efficiency improvements, energy management system, metallurgical enterprise, optimal strategy.Abstract
The metallurgical industry of Ukraine in wartime faced significant difficulties in its functioning. However, at the moment there is a gradual recovery of the industry. It should be noted that steel production is an extremely energy-intensive process, accounting for the second largest share of energy consumption and the largest share of CO2 emissions. Therefore, in order to control the growth of energy consumption and CO2 emissions in this industry, as well as to be competitive in the international market, Ukrainian metallurgical enterprises should not only expect maximum assistance from the government bodies and international partners in matters of logistics and sales markets, but also focus on energy efficiency issues and decarbonization of their production. While improving the energy efficiency of steel production through the introduction of standard energy efficiency measures will help the industry, there is a need to further develop and deploy a wide portfolio of breakthrough solutions to improve processes and infrastructure. This will achieve long-term deep reductions in CO2 emissions. For this activity to be purposeful rather than chaotic, individual enterprises and the industry must develop a strategy to increase energy efficiency and decarbonize their production. This article is devoted to one of the possible approaches to solving this issue. Along with a description of the mathematical model for the formation of an optimal strategy for improving energy efficiency and decarbonization of metallurgical industries, the article presents the structure of energy costs, as well as the list of significant energy usages at metallurgical enterprises. In addition, a separate place in the article is given to the issue of building an energy baseline, taking into account the provisions of modern international standards in the field of energy management system (ISO 50001, ISO 50006, ISO 50047), as well as the main factors affecting energy consumption. The paper also presents the list of typical measures for improving the energy efficiency of metallurgical enterprises for each group of significant energy usages.
References
REFERENCES
Bolshakov V. I. Chorna metalurhiia i natsionalna bezpeka Ukrainy / V. I. Bolshakov, L. H. Tuboltsev // Visnyk NAN Ukrainy. – 2014. – № 9. – S. 48-58.
Naivyshchyi obsiah eksportu Ukrainy u 2021 rotsi - produktsiia metalurhii ta ahrarnoho sektoru: [elektronnyi resurs]: Sait Ofisu z rozvytku pidpryiemnytstva ta eksportu. – rezhym dostupu: https://export.gov.ua/news/3617-naivishchii_obsiag_eksportu_ukraini_u_2021_rotsi_-_produktsiia_metalurgii_ta_agrarnogo_sektoru. – Nazva z ekrana.
December 2021 crude steel production and 2021 global crude steel production totals: [eлектронний ресурс]: Сайт The World Steel Association (worldsteel). – режим доступу: https://worldsteel.org/media-centre/press-releases/2022/december-2021-crude-steel-production-and-2021-global-totals/. – Назва з екрана.
Stan ukrainskoi metalurhii pid chas viiny: [elektronnyi resurs]. – rezhym dostupu: https://ukraineinvest.gov.ua/uk/news/22-06-22-3/. – Nazva z ekrana.
IEA (2021), Driving Energy Efficiency in Heavy Industries, IEA, Paris https://www.iea.org/articles/driving-energy-efficiency-in-heavy-industries.
Amosha O.I., Nikiforova V.A. Rozvytok metalurhiinoi smart-promyslovosti v Ukraini: peredumovy, problemy, osoblyvosti, naslidky: naukovo-analitychna dopovid; NAN Ukrainy, In-t ekonomiky prom-sti. Kyiv, 2019. - 67 c.
Ukrainski brukhtozahotivelnyky hotuiutsia do pereroblennia viiskovoi tekhniky: [elektronnyi resurs]: – rezhym dostupu: https://gmk.center/ua/news/ukrainski-brukhtozahotivelnyky-hotuiutsia-do-pereroblennia-vijskovoi-tekhniky/. – Nazva z ekrana.
Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong. (2020). Material and Energy Flows of the Iron and Steel Industry: Status Quo, Challenges and Perspectives. Applied Energy. 268. 114946. 10.1016/j.apenergy.2020.114946. Available online: https://www.sciencedirect.com/science/article/pii/S030626192030458X (accessed on 20 May 2022).
Joint Research Centre, Institute for Prospective Technological Studies, Remus, R., Roudier, S., Delgado Sancho, L., et al., Best available techniques (BAT) reference document for iron and steel production: industrial emissions Directive 2010/75/EU : integrated pollution prevention and control, Publications Office, 2013, Available online: https://data.europa.eu/doi/10.2791/97469 (accessed on 20 May 2022).
World Steel Association. Steel’s Contribution to A Low Carbon Future and Climate Resilient Societies—World Steel Position Paper; World Steel Association: Brussels, Belgium, 2020; ISBN 978-2-930069-83-8. Available online: https://www.worldsteel.org/en/dam/jcr:7ec64bc1-c51c-439b-84b8-94496686b8c6/Position_paper_climate_2020_vfinal.pdf (accessed on 20 May 2022).
Hargroves, K., Gockowiak, K., McKeague, F., and Desha, C. (2014) An Overview of Energy Efficiency Opportunities in Mining and Metallurgy Engineering, The University of Adelaide and Queensland University of Technology (The Natural Edge Project), commissioned by the Australian Government Department of Industry, Canberra.
Remus R, Aguado Monsonet M, Roudier S, Delgado Sancho L. Best Available Techniques (BAT) Reference Document:for:Iron and Steel Production:Industrial Emissions Directive 2010/75/EU:(Integrated Pollution Prevention and Control). EUR 25521 EN. Luxembourg (Luxembourg): Publications Office of the European Union; 2012. JRC69967.
Holappa, L. (2020). A general vision for reduction of energy consumption and CO2 emissions from the steel industry. Metals, 10(9), 1-20. [1117]. https://doi.org/10.3390/met10091117.
Flues, Florens, Dirk Rübbelke and Stefan Vögele (2013), Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry, ZEW Discussion Paper No. 13-101, Mannheim. Available online: http://ftp.zew.de/pub/zew-docs/dp/dp13101.pdf (accessed on 20 May 2022).
IEA, Iron and Steel Technology Roadmap, October 2020. Available online: https://www.iea.org/reports/iron-and-steel-technology-roadmap. (accessed on 20 May 2022).
Systemy enerhetychnoho menedzhmentu. Vymiriuvannia rivnia dosiahnutoi enerhoefektyvnosti z vykorystanniam bazovykh rivniv enerhospozhyvannia ta pokaznykiv enerhoefektyvnosti. Zahalni polozhennia i nastanova»: ISO 50006:2014, IDT — DSTU ISO 50006:2016. — [Chynnyi vid 2016-04-29]. — K.: DP «UkrNDNTs», 2016. — 56 s. — (Natsionalni standarty Ukrainy).
Enerhozberezhennia. Vyznachennia obsiahiv enerhozberezhennia v orhanizatsiiakh: ISO 50047:2016, IDT - DSTU ISO 50047:2020. [Chynnyi vid 2020-09-15]. — K.: DP UkrNDNTs, 2020. — 37 s. — (Natsionalni standarty Ukrainy).
Praktychnyi posibnyk z enerhetychnoho audytu promyslovykh pidpryiemstv/ A. Cherniavskyi, A. Safiants, N. Usenko, O. Solovei, O. Borychenko, P. Pertko, Yu. Shyshko, A. Hoienko// Za zahalnoiu redaktsiieiu N. Usenko ta A. Cherniavskoho. – K.: Proekt «Konsultuvannia pidpryiemstv shchodo enerhoefektyvnosti» Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH za doruchenniam Federalnoho ministerstva ekonomichnoho spivrobitnytstva ta rozvytku Nimechchyny (BMZ), 2020. – 280 s.
Kerivnytstvo z vprovadzhennia systemy enerhetychnoho menedzhmentu vidpovidno do vymoh mizhnarodnoho standartu ISO 50001:2018/ A. Cherniavskyi, Ye. Inshekov, O. Solovei, O. Borychenko, P. Pertko // Za zahalnoiu redaktsiieiu Ye. Inshekova, A. Cherniavskoho. - K.: Proiekt UNIDO/GEF «Vprovadzhennia standartu system enerhomenedzhmentu v promyslovosti Ukrainy», 2021. – 137 s.
Fazeli, Alireza & Bakhtvar, Farzaneh & Jahanshaloo, Leila & Che Sidik, Nor Azwadi. (2014). Efficiency benchmarking of the iron and steel industry via the benchmark curve: A review. Advanced Review on Scientific Research. 2. 19-40.
Planirovanie optimalnogo ispolzovaniya potentsiala energosberezheniya promyishlennyih predpriyatiy Ukrainyi / V.P. Rozen, A.I. Solovey, A.V. Chernyavskiy, M.A. Kazmiruk // TehnIchna elektrodinamIka. 2006. #5. – S.59-68.
Software Tools: Website of US Department of Energy: URL: https://www.energy.gov/eere/amo/software-tools.
Website of Ireland's national sustainable energy authority: URL: https://www.seai.ie/tools/.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).