HIGHLY EFFECTIVE DIRECT CONTACT HUMIDIFIER FOR THERMAL DESALINATION SYSTEM

Authors

DOI:

https://doi.org/10.20535/1813-5420.3.2023.289729

Keywords:

air humidification-dehumidification, direct contact heat exchanger, energy characteristics, mathematical modeling, thermal desalination.

Abstract

The aim of the work is to increase the efficiency of thermal desalination systems with a humidification-dehumidification air cycle due to the reduction of electricity consumption. The most common designs of heat exchangers for air humidification have significant aerodynamic and hydraulic drops. To eliminate this disadvantage, it is proposed to use the internal volume of the vertical tube as an active heat and mass transfer zone during moisture evaporation from salt water to air. The operation of such desalination system has been mathematically modeled and its energy characteristics were determined. A special feature of the mathematical model is the consideration of heat and mass transfer equations for the humidifier and dehumidifier. The effective air velocity in the tube is 3 m/s. Effective operation of thermal unit with a film humidifier is possible then air mass flow is equal to the salt water flow. In this case, the geometric dimensions of the tube must be within the following limits: diameter 20...30 mm, height 2...2.5 m. The conducted mathematical modeling and obtained results give reasons to assert, that for the same rate of evaporation, the film heat exchanger has the lowest aerodynamic and hydrodynamic drops compared to other types of humidifiers. The use of such direct contact device will lead to a decrease in the electricity consumption necessary for salt water and air circulation in the humidification-dehumidification thermal installation.

References

A. Giwa , N. Akther, A. A .Housani, S. Haris, S. W. Hasen, “Recent advances in humidification dehumidifiation (HDH) desalination processes: improved designs and productivity.” Renewable and sustainable energy reviews, vol.57, pp.929-944 , May 2016. doi:10.1016/j.rser.2015.12.108.

S. A. Kalogirou, “Seawater desalination using renewable energy sources.” Progress in energy and combustion science, vol. 31, pp. 242-281,2005. doi:10.1016/j.pecs.2005.03.001.

G. N. Tiwari, H. N. Singh, R. Tripathi, “Present status of solar distillation.” Solar Energy,vol. 75, pp. 367-373,Nov 2003. doi:10.1016/j.solener.2003.07.005.

V. Belessiotis, S. Kalogirou, E. Delyannis. “Thermal solar desalination: methods and systems.” [online] Elsevier Science; June 2016.

M. A. Elnasr, M. Kamal, H. Saad, M. Ehlhelaly, “Water desalination using solar energy: humidification and dehumidification principle.” Innovative energy&research.Vol.4, pp.121. doi: 10.4172/2576-1463.1000121.

V.V. Sereda, A. S. Solomakha, N.O. Prytula, O.A. ”Thermodynamic analysis of thermal desalination system with humidification–dehumidification cycle”, KPI Science News, no. 4, pp. 105-112 ,2021. doi: 10.20535/kpisn.2021.4.250663.

V. V. Sereda, A. S. Solomakha, N. O. Prytula, N. O. Shvets, “Thermodynamic analysis of water desalination system with open and closed air cycle.” Scientific notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences, Vol. 33(72), pp. 146-152,2022. doi:10.32782/2663-5941/2022.6/25.

A.S. S. Mohamed, M. S. Ahmed, Hussein M.Marghrabir, A. G. Shahdy, “Desalination process using humidification–dehumidification technique: a detailed review.” International journal of energy research., Vol. 45, 2020. doi: 10.1002/er.6111.

V. Patel, R. Patel, J, Patel, “Experimental and theoretical evaluation of bubbler humidifier for humidification-dehumidification water desalination system.” Heat and Mass Transfer,2019. doi:10.1007/s00231-019-02659-1.

E. Eder, M. Preibinger, “Experimental analysis of the humidification of air in bubble columns for thermal water treatment systems.” Experimental Thermal and Fluid Science, Vol. 115,2020. doi:10.1016/j.expthermflusci.2020.110063.

M. Abu Elnasr, M. Kamal, H. Saad, M. Elhelaly, “Water Desalination using Solar Energy: Humidification and Dehumidification Principle,” Innovative energy&research, Vol. 4(3), 2015. doi:10.4172/2576-1463.1000121.

S. Yanniotis, K. Xerodemas, “Air humidification for seawater desalination,” Desalination,Vol. 158 (1) pp.313–319,Feb 2003. doi:10.1016/S0011-9164(03)00469-7.

G. Yuan, H. Zhang, “Mathematical modeling of a closed circulation solar desalination unit with humidification–dehumidification,” Desalination, Vol. 205 (1–3), Vol. 156–162, 2007. doi:10.1016/j.desal.2006.03.550.

G. Yuan, Z. Wang, H. Li, X. Li, “Experimental study of a solar desalination system based on humidification–dehumidification process,” Desalination, Vol.277 (1-3), pp.92-98, Aug 2011. doi:10.1016/j.desal.2011.04.002.

C++ library of properties for 122 components. (2023). [Online]. Available:http://www.coolprop.org

P. Barabash, A. Solomakha , V.Sereda, et al. “Heat and mass transfer of countercurrent air-water flow in a vertical tube.” Heat Mass Transfer , 2023 . doi:10.1007/s00231-023-03342-2.

N. Minh Phu, N. Van Hap. “Influence of inlet water temperature on heat transfer and pressure drop of dehumidifying air coil using analytical and experimental methods,” Case Studies in Thermal Engineering 18 (2020) 100581 doi:10.1016/j.csite.2019.100581.

Z. Zeng, A. Sadeghpour, Y. Sungtaek Ju, “A highly effective multi-string humidifier with a low gas stream pressure drop for desalination,” Desalination, VOl. 449, pp. 91-100, 2019. doi:10.1016/j.desal.2018.10.017.

Published

2023-11-13

Issue

Section

ENVIRONMENTAL PROBLEMS IN ENERGY